Please wait a minute...
Acta Physico-Chimica Sinica  2009, Vol. 25 Issue (03): 513-518    DOI: 10.3866/PKU.WHXB20090319
Article     
Preparation of PPy/CNTs Composite Based on the Electrostatic Absorption Effect
 DU Bing, JIANG Qi, ZHAO Xiao-Feng, LIN Sun-Zhong, MU Pei-Shan, ZHAO Yong
Key Laboratory of Advanced Technologies of Materials (Ministry of Education of China) and Superconductivity R&D Center, Southwest Jiaotong University, Chengdu 610031, P. R. China; School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW, Australia
Download:   PDF(1437KB) Export: BibTeX | EndNote (RIS)      

Abstract  

We prepared PPy/CNTs (polypyrrole/carbon nanotubes) composites for easy application in industrial production. Sodium dodecyl benzene sulfonate (SDBS) was used as a surfactant to produce an electrostatic absorption effect on the surface of CNTs. This effect promoted the adherence of pyrrole monomers to CNTs. CNTs were then covered with polypyrrole by chemical polymerization. Microstructures and components of the obtained materials were characterized by transmission electron microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. Electrochemical performances of samples were tested by cyclic voltammetry, and galvanostatic charging/discharging by assembling the materials into electrochemical super capacitors. Results showed that pyrrole monomers could attach to the surface of CNTs via the addition of SDBS. Addition of CNTs effectively diminished the size of PPy and also improved electric and mechanical characteristics of the obtained materials. The electrochemical capacitance of the obtained porous PPy/CNTs composite was 101.1 F·g-1 (organic electrolyte) which was about 5 times that of pristine PPy (about 19.0 F·g-1) and about 4 times that of pristine CNTs (25.0 F·g-1).



Key wordsPPy/CNTs composite      Electrostatic absorption effect      Electrochemical super capacitor      Electrochemical performance     
Received: 18 September 2008      Published: 19 December 2008
MSC2000:  O648  
  TM911  
Corresponding Authors: JIANG Qi     E-mail: jiangqi66@163.com
Cite this article:

DU Bing, JIANG Qi, ZHAO Xiao-Feng, LIN Sun-Zhong, MU Pei-Shan, ZHAO Yong. Preparation of PPy/CNTs Composite Based on the Electrostatic Absorption Effect. Acta Physico-Chimica Sinica, 2009, 25(03): 513-518.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20090319     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2009/V25/I03/513

[1] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2072-2081.
[2] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1944-1959.
[3] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1593-1603.
[4] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 969-974.
[5] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 717-722.
[6] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1521-1526.
[7] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1527-1534.
[8] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1437-1451.
[9] SU Shuo-Jian, NULI Yan-Na, FEILURE Tuerxun, YANG Jun, WANG Jiu-Lin. Effects of Cathode Current Collectors on the Electrochemical Performance of Rechargeable Magnesium Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(1): 111-120.
[10] FEILURE Tuerxun, ZULIPIYA Shadike, NULI Yan-Na, YANG Jun, WANG Jiu-Lin. Pyrazolyl Magnesium Halide/Tetrahydrofuran Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1634-1640.
[11] ZHOU Ying, WANG Dao-Long, XIAO Nan, HOU Yu-Chen, QIU Jie-Shan. Influence of Heat Treatment Temperature on the Structure and Electrochemical Performance of Asphaltene-Based B/N Co-Doped Porous Carbons[J]. Acta Physico-Chimica Sinica, 2014, 30(6): 1127-1133.
[12] LI Li, HU Zhong-Ai, YANG Yu-Ying, WU Hong-Ying, CUI Lu-Juan. Synthesis of a MnO2/NiCo2O4 Composite by Electrostatic Self-Assembly and Its Electrochemical Performance[J]. Acta Physico-Chimica Sinica, 2014, 30(5): 899-907.
[13] CHEN Lai, CHEN Shi, HU Dao-Zhong, SU Yue-Feng, LI Wei-Kang, WANG Zhao, BAO Li-Ying, WU Feng. Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)[J]. Acta Physico-Chimica Sinica, 2014, 30(3): 467-475.
[14] BIAN Pei-Wen, NULI Yan-Na, Zainapuguli, YANG Jun, WANG Jiu-Lin. Benzenethiolate-Based Solutions for Rechargeable Magnesium Battery Electrolytes[J]. Acta Physico-Chimica Sinica, 2014, 30(2): 311-317.
[15] CHEN Chan-Juan, HU Zhong-Ai, HU Ying-Ying, LI Li, YANG Yu-Ying, AN Ning, LI Zhi-Min, WU Hong-Ying. SnO2/Graphite Nanosheet Composite Electrodes and Their Application in Supercapacitors[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2256-2262.