Please wait a minute...
Acta Physico-Chimica Sinica  2007, Vol. 23 Issue (07): 1090-1094    DOI: 10.3866/PKU.WHXB20070724
Note     
Preparation and Electrochemical Properties of Cu Doped V2O5
WEI Ying-Jin; LI Xu; WANG Chun-Zhong; ZHAN Shi-Ying; CHEN Gang
College of Materials Science and Engineering, Jilin University, Changchun 130021, P. R. China
Download:   PDF(715KB) Export: BibTeX | EndNote (RIS)      

Abstract  Crystalline Cu0.04V2O5 was prepared by precipitation method followed by heat treatment at 300 and 600 ℃. The material prepared at 300 ℃ showed porous morphology, whereas that prepared at 600 ℃ was highly crystalline. X-ray diffraction showed both materials exhibiting the same orthorhombic structure as that of V2O5. Fourier transform infrared spectroscopy confirmed the existence of ca 0.18 mol of absorbed water in one mol of the material prepared at 300 ℃electrochemical performance of V2O5. The material prepared at 600 ℃ had a reversible discharge capacity over 160 mAh·g-1 after 60 cycles at the current density of C/5.6. The material prepared at 300 ℃ showed good cycling performance at higher current densities, with a reversible capacity ca 100 mAh·g-1 when cycled at C/1.9. The discrepancy in the rate performance of Cu0.04V2O5 was attributed to the morphology of materials.

Key wordsLithium-ion battery      Cathode material      V2O5      Cationic doping      Electrochemical properties     
Received: 22 January 2007      Published: 10 May 2007
MSC2000:  O646  
Corresponding Authors: CHEN Gang     E-mail: gchen@jlu.edu.cn
Cite this article:

WEI Ying-Jin; LI Xu; WANG Chun-Zhong; ZHAN Shi-Ying; CHEN Gang. Preparation and Electrochemical Properties of Cu Doped V2O5. Acta Physico-Chimica Sinica, 2007, 23(07): 1090-1094.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20070724     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2007/V23/I07/1090

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 18-27.
[10] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 211-241.
[11] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2287-2292.
[12] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2293-2300.
[13] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1866-1879.
[14] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1999-2006.
[15] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1489-1494.