Please wait a minute...
Acta Phys. -Chim. Sin.  2007, Vol. 23 Issue (07): 1065-1070    DOI: 10.3866/PKU.WHXB20070719
Article     
Preparation and Properties of Sandwich-type Si/Fe/Si Film Anode for Lithium-ion Battery
ZHANG Hong-Fang; FU Ping-Ping; SONG Ying-Jie; DU Chen-Shu; YANG Hua-Bin; ZHOU Zuo-Xiang; WU Meng-Tao; HUANG Lai-He
Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, P. R. China; Tianjin B&MScience and Technology Joint-Stock Co., Ltd., Tianjin 300384, P. R. China
Download:   PDF(846KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A sandwich-type Si/Fe/Si film was deposited on Cu foil by magnetron sputtering. High-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) results indicated that the sputtered film had an amorphous structure. The cross-sectional scanning electron microscope (SEM) images and the energy dispersive X-ray spectrometry (EDXS) spectra showed that the thickness of the filmwas 3.2 μm, and its volume expansion ratio was up to 265% after the prolonged electrochemical lithiation and delithiation cycles. In the potential range 1.5-0.005 V (vs Li+/Li) at the current density of 0.1 mA·cm-2, the film anode exhibited a high initial lithiation capacity around 1.85 mAh·cm-2, and reached the highest reversible delithiation capacity of 0.84 mAh·cm-2 after 70 cycles. After 200 cycles, it still retained a reversible capacity of 0.55 mAh·cm-2, which was 66%of the highest reversible capacity. The introduction of Fe to Si not only improved the conductivity of the film, which partially reduced the voltage hysteresis, but also effectively suppressed the volume expansion, which led to a prolonged cycle life.



Key wordsLithium-ion battery      Anode material      Magnetron sputtering      Sandwich-type structure      Si/Fe/Si film     
Received: 28 December 2006      Published: 08 May 2007
MSC2000:  O646  
Corresponding Authors: YANG Hua-Bin     E-mail: hb_yang@nankai.edu.cn
Cite this article:

ZHANG Hong-Fang; FU Ping-Ping; SONG Ying-Jie; DU Chen-Shu; YANG Hua-Bin; ZHOU Zuo-Xiang; WU Meng-Tao; HUANG Lai-He. Preparation and Properties of Sandwich-type Si/Fe/Si Film Anode for Lithium-ion Battery. Acta Phys. -Chim. Sin., 2007, 23(07): 1065-1070.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20070719     OR     http://www.whxb.pku.edu.cn/Y2007/V23/I07/1065

[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[3] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[4] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[5] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[6] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[7] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[8] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[9] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[10] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[11] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132.
[12] Er-Long SONG,Lin-Feng LAN,Zhen-Guo LIN,Sheng SUN,Wei SONG,Yu-Zhi LI,Pei-Xiong GAO,Peng ZHANG,Jun-Biao PENG. Preparation of Indium-Zinc-Oxide Thin Film Transistors by Hot-Pressing Sintering Target[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2092-2098.
[13] Sheng-Yi MIAO,Xian-Fu WANG,Cheng-Lin YAN. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 18-27.
[14] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2280-2286.
[15] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300.