Please wait a minute...
Acta Physico-Chimica Sinica  2007, Vol. 23 Issue (07): 1065-1070    DOI: 10.3866/PKU.WHXB20070719
Article     
Preparation and Properties of Sandwich-type Si/Fe/Si Film Anode for Lithium-ion Battery
ZHANG Hong-Fang; FU Ping-Ping; SONG Ying-Jie; DU Chen-Shu; YANG Hua-Bin; ZHOU Zuo-Xiang; WU Meng-Tao; HUANG Lai-He
Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, P. R. China; Tianjin B&MScience and Technology Joint-Stock Co., Ltd., Tianjin 300384, P. R. China
Download:   PDF(846KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A sandwich-type Si/Fe/Si film was deposited on Cu foil by magnetron sputtering. High-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) results indicated that the sputtered film had an amorphous structure. The cross-sectional scanning electron microscope (SEM) images and the energy dispersive X-ray spectrometry (EDXS) spectra showed that the thickness of the filmwas 3.2 μm, and its volume expansion ratio was up to 265% after the prolonged electrochemical lithiation and delithiation cycles. In the potential range 1.5-0.005 V (vs Li+/Li) at the current density of 0.1 mA·cm-2, the film anode exhibited a high initial lithiation capacity around 1.85 mAh·cm-2, and reached the highest reversible delithiation capacity of 0.84 mAh·cm-2 after 70 cycles. After 200 cycles, it still retained a reversible capacity of 0.55 mAh·cm-2, which was 66%of the highest reversible capacity. The introduction of Fe to Si not only improved the conductivity of the film, which partially reduced the voltage hysteresis, but also effectively suppressed the volume expansion, which led to a prolonged cycle life.



Key wordsLithium-ion battery      Anode material      Magnetron sputtering      Sandwich-type structure      Si/Fe/Si film     
Received: 28 December 2006      Published: 08 May 2007
MSC2000:  O646  
Corresponding Authors: YANG Hua-Bin     E-mail: hb_yang@nankai.edu.cn
Cite this article:

ZHANG Hong-Fang; FU Ping-Ping; SONG Ying-Jie; DU Chen-Shu; YANG Hua-Bin; ZHOU Zuo-Xiang; WU Meng-Tao; HUANG Lai-He. Preparation and Properties of Sandwich-type Si/Fe/Si Film Anode for Lithium-ion Battery. Acta Physico-Chimica Sinica, 2007, 23(07): 1065-1070.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20070719     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2007/V23/I07/1065

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[5] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[6] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[7] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 845-852.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[9] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.
[10] PENG Bo, XU Yao-Lin, MULDER Fokko M. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2127-2132.
[11] SONG Er-Long, LAN Lin-Feng, LIN Zhen-Guo, SUN Sheng, SONG Wei, LI Yu-Zhi, GAO Pei-Xiong, ZHANG Peng, PENG Jun-Biao. Preparation of Indium-Zinc-Oxide Thin Film Transistors by Hot-Pressing Sintering Target[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2092-2098.
[12] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 18-27.
[13] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2280-2286.
[14] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2293-2300.
[15] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1999-2006.