Please wait a minute...
Acta Physico-Chimica Sinica  2007, Vol. 23 Issue (Supp): 1-4    DOI: 10.3866/PKU.WHXB2007Supp01
Article     
Performance of Liquid Electrolyte for Lithium-ion Battery at Elevated-temperature
GUO Ying-Jun; LI Qi-Qi-Ge; NING Ying-Kun; QI Lu; TANG Hong-Wu
CITIC Guoan Mengguli New Engery Technology Co. Ltd., Beijing 102200, P. R. China; New Energy Materials and Technology Laboratory, Department of Applied Chemistry, College of Chemical and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(203KB) Export: BibTeX | EndNote (RIS)      

Abstract  A new functional electrolyte was developed to improve the cycling performance of LiMn2O4 spinel at elevated temperatures. The so-called high-temperature electrolyte was formed by adding additive Li2CO3 into conventional LiPF6 electrolyte solutions. The Li2CO3 could greatly surpress the production of hydro fluoric acid in electrolyte solution even at elevated temperatures. With the increase of Li2CO3 ratio in electrolyte solution, the HF contents decreased. Electrochemical measurements of 6 Ah lithium-ion batteries with spinel LiMn2O4 as cathode material showed that additive Li2CO3 could greatly improve the elevated temperature (55 ℃) cycling performance of spinel LiMn2O4 lithium-ion batteries.

Key wordsLithium-ion battery      Lithiummanganese oxide spinel      Li2CO3      Electrolyte for elevated temperature      Elevated-temperature cycling     
Received: 01 January 1900      Published: 04 January 2008
MSC2000:  O646  
Corresponding Authors: QI Lu     E-mail: qilu@pku.edu.cn
Cite this article:

GUO Ying-Jun; LI Qi-Qi-Ge; NING Ying-Kun; QI Lu; TANG Hong-Wu. Performance of Liquid Electrolyte for Lithium-ion Battery at Elevated-temperature. Acta Physico-Chimica Sinica, 2007, 23(Supp): 1-4.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB2007Supp01     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2007/V23/ISupp/1

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[5] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 18-27.
[10] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2293-2300.
[11] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1999-2006.
[12] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinica, 2016, 32(5): 1056-1061.
[13] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 969-974.
[14] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 717-722.
[15] ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 905-912.