Please wait a minute...
Acta Physico-Chimica Sinica  2007, Vol. 23 Issue (Supp): 60-66    DOI: 10.3866/PKU.WHXB2007Supp14
Article     
Electrochemical Performance of LithiumIon Battery for Plug-in Hybrid Electric Vehicle Applications
AN Hong-Li; WU Ning-Ning; LEI Xiang-Li; XU Jin-Long; QI Lu
CITIC Guoan Mengguli New Energy Technology Co. Ltd., Beijing 102200, P. R. China; New Energy Materials and Technology Laboratory, Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(499KB) Export: BibTeX | EndNote (RIS)      

Abstract  With the application of spinel LiMn2O4 cathode material and new seperator, a 60 Ah LiMn2O4-based lithium ion battery for plug-in hybrid electric vehicles (PHEV) was developed on the basis of studying the influence of electrode fabrication technology and electrolyte on the rate charge-discharge and cycling performance. Battery electrochemical performances were studied, including rate charge-discharge, cycling and storage. Lithium ion battery module (88 cells in series) for PHEV was also prepared. The rate discharge, 10 s. pulse power, 30 s. pulse power and fast charge performances for the module have been evaluated. The results indicated that the 60 Ah LiMn2O4 lithium ion battery has excellent performance on rate discharge, fast charge, cycle life and storage, it is a promising battery of PHEV applications.

Key wordsLiMn2O4      Li-ion battery      PHEV      Battery module     
Received: 01 January 1900      Published: 04 January 2008
MSC2000:  O646  
Corresponding Authors: AN Hong-Li     E-mail: anhongli1@sina.com
Cite this article:

AN Hong-Li; WU Ning-Ning; LEI Xiang-Li; XU Jin-Long; QI Lu. Electrochemical Performance of LithiumIon Battery for Plug-in Hybrid Electric Vehicle Applications. Acta Physico-Chimica Sinica, 2007, 23(Supp): 60-66.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB2007Supp14     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2007/V23/ISupp/60

[1] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2280-2286.
[2] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1521-1526.
[3] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1527-1534.
[4] LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1650-1658.
[5] ZHENG Jie-Yun, WANG Rui, LI Hong. Fabrication and Electrochemical Behavior of a Pure-Phase Li2MnO3 Thin Film for Cathode Material of Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(10): 1855-1860.
[6] XU Ke, SHEN Lai-Fa, MI Chang-Huan, ZHANG Xiao-Gang. Synthesis and Electrochemical Performance of Graphene Modified LiFePO4 Cathode Materials[J]. Acta Physico-Chimica Sinica, 2012, 28(01): 105-110.
[7] QIU Xiang-Yun, ZHUANG Quan-Chao, WANG Hong-Ming, CUI Yong-Li, FANG Liang, SUN Shi-Gang. Influence of Electrolyte Composition on the Intercalation-Deintercalation Process of Lithium Ion in Spinel LiMn2O4[J]. Acta Physico-Chimica Sinica, 2010, 26(06): 1499-1506.
[8] TAN Xiao-Lan, CHENG Xin-Qun, MA Yu-Lin, ZUO Peng-Jian, YIN Ge-Ping. Film Formation and Cycleability of LiBOB-Based Electrolyte[J]. Acta Physico-Chimica Sinica, 2009, 25(10): 1967-1971.
[9] ZHONG Mei-E, ZHOU Zhi-Hui, ZHOU Zhen-Tao. Electrochemical Performance of High-Density LiFePO4/C Composites Synthesized by Solid State-Carbothermal Reduction Method[J]. Acta Physico-Chimica Sinica, 2009, 25(08): 1504-1510.
[10] HU Guo-Rong, CAO Yan-Bing, PENG Zhong-Dong, DU Ke, JIANG Qing-Lai. Preparation of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries by Microwave Synthesis[J]. Acta Physico-Chimica Sinica, 2009, 25(05): 1004-1008.
[11] ZHANG Guo-Qiang, MA Li, WU Zhong-Jie, ZHANG Hai-Yan, NI Pei. Electrochemical Behaviour of the Composite Polymer Electrolyte P(VDF-HFP)-PMMA/CaCO3(SiO2)[J]. Acta Physico-Chimica Sinica, 2009, 25(03): 555-560.
[12] HUANG Jun-Jie; JIANG Zhi-Yu. Electrochemical Performance of LiMn2O4 Thin Film Electrode Fabricated by Ink-Jet Printing Technique[J]. Acta Physico-Chimica Sinica, 2008, 24(09): 1563-1567.
[13] LI Fan-Qun; LAI Yan-Qing; ZHANG Zhi-An; GAO Hong-Quan; YANG Juan. Electrochemical Behaviors of Et4NBF4+LiPF6/EC+PC+DMC Electrolyte on Graphite Electrode[J]. Acta Physico-Chimica Sinica, 2008, 24(07): 1302-1306.
[14] WU Ke; WANG Yin-Ping; WANG Jian; LI Yong-Wei; AN Ping; QI Lu. Electrochemical Performance of Novel Li4Ti5O12/LiMn2O4 System[J]. Acta Physico-Chimica Sinica, 2007, 23(Supp): 5-9.
[15] WANG Ya-Dan; WANG Jian; MU Qi-Yong; LI Yong-Wei; QI Lu. Electrochemical Performances of LiMn2O4-based Electrode with Water-soluble Binder[J]. Acta Physico-Chimica Sinica, 2007, 23(Supp): 14-17.