Please wait a minute...
Acta Physico-Chimica Sinica  2007, Vol. 23 Issue (07): 1113-1116    DOI: 10.3866/PKU.WHXB20070729
Note     
Hole Oxidation on TiO2 Films in Aqueous Solutions Studied by Using OTS SAMs as a Probe
ZHOU Xue-Feng; LI Wei; ZHANG Yan; YANG Zhu-Hong; FENG Xin; LU Xiao-Hua
Department of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China
Download:   PDF(327KB) Export: BibTeX | EndNote (RIS)      

Abstract  An approach was developed to investigate hole oxidation on TiO2 films in aqueous solutions by using octadecyltrichlorosilane (OTS) self-assembled monolayers (SAMs) as a probe, in which the adsorption and surface diffusion of the reactants were exculded. Under UV irradiation, the water contact angle of the OTS SAMs on TiO2 films in water decreased obviously. In the presence of hole scavengers, the decrease of water contact angle for the OTS SAMs on TiO2 films with UV irradiation was inhibited apparently, while the effect of·OH radical scavengers and fluoride on the decrease of water contact angle was very small. It indicated that direct hole oxidation played a major role in photocatalytic removal of alkyl chains on TiO2 films in aqueous solutions.

Key wordsPhotocatalysis      Mechanism      Hole oxidation      Scavenger      SAMs     
Received: 13 December 2006      Published: 29 April 2007
MSC2000:  O643  
Corresponding Authors: LU Xiao-Hua     E-mail: xhlu@njut.edu.cn
Cite this article:

ZHOU Xue-Feng; LI Wei; ZHANG Yan; YANG Zhu-Hong; FENG Xin; LU Xiao-Hua. Hole Oxidation on TiO2 Films in Aqueous Solutions Studied by Using OTS SAMs as a Probe. Acta Physico-Chimica Sinica, 2007, 23(07): 1113-1116.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20070729     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2007/V23/I07/1113

[1] GONG Linji, XIE Jiani, ZHU Shuang, GU Zhanjun, ZHAO Yuliang. Application of Multifunctional Nanomaterials in Tumor Radiosensitization[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 140-167.
[2] XIAO Jie, ZHANG Bo, ZHENG Zhao-Lei. Development and Validation of a Reduced Chemical Kinetic Mechanism for HCCI Engine of Biodiesel Surrogate[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1752-1764.
[3] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1905-1914.
[4] WANG Ling-Xuan, ZHU Hua-Tong, ZU Li-Li. Studying Ionization and Decomposition Mechanism of Alkyl Dinitrites by Mass Spectrometry[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1709-1714.
[5] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1399-1410.
[6] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[7] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1411-1420.
[8] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1085-1107.
[9] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 530-538.
[10] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 590-601.
[11] YU Hai-Yang, WANG Fang, LIU Qi-Chun, MA Qing-Yu, GU Zheng-Gui. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 344-355.
[12] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 270-282.
[13] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 399-406.
[14] ZHENG Dong, ZHONG Bei-Jing, YAO Tong. Methodology for Formulating Aviation Kerosene Surrogate Fuels and The Surrogate Fuel Model for HEF Kerosene[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2438-2445.
[15] BAI Xiao-Fang, CHEN Wei, WANG Bai-Yin, FENG Guang-Hui, WEI Wei, JIAO Zheng, SUN Yu-Han. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2388-2403.