Please wait a minute...
Acta Phys. -Chim. Sin.  2008, Vol. 24 Issue (02): 243-249    DOI: 10.1016/S1872-1508(08)60013-3
Article     
Effect of pH Value on the Adsorption Behavior and Inhibition Mechanism of Dodecylamine on Carbon Steel
LU Zhao-Ling; QIU Yu-Bing; GUO Xing-Peng
Key Laboratory of Materials Chemistry and Service Failure of Hubei Province, Department of Chemistry and Chemical Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
Download:   PDF(1704KB) Export: BibTeX | EndNote (RIS)      

Abstract  The effect of pH value on the adsorption behavior and inhibition mechanism of dodecylamine for carbon dioxide corrosion of carbon steel was investigated by electrochemical methods and scanning electron microscopy (SEM). The results indicated that the pH value of the solution played the crucial role to the adsorption behavior and inhibition mechanismof dodecylamine. The inhibition performance of dodecylamine on carbon steel was dependent on the pH value and the inhibition efficiency increased with the increase of pH value. At pH 4.9, dodecylamine mainly inhibited the cathode process of the corrosion. The adsorption energy of dodecylamine on the metal surface was lower. The adsorption of dodecylamine on the metal surface was not stable and an anode desorption phenomenon could be observed. Hence, dodecylamine did not provide effective inhibition to the corrosion. While at pH 6.9, it had much higher adsorption energy. Dodecylamine adsorbed on the metal surface tightly and formed the effective diffusion barrier which inhibited both the cathode and anode processes effectively.

Key wordsCarbon dioxide      Dodecylamine      Adsorption      Inhibition mechanism      pH value      Carbon steel     
Received: 12 July 2007      Published: 04 January 2008
MSC2000:  O646  
Corresponding Authors: GUO Xing-Peng     E-mail: guoxp@mail.hust.edu.cn
Cite this article:

LU Zhao-Ling; QIU Yu-Bing; GUO Xing-Peng. Effect of pH Value on the Adsorption Behavior and Inhibition Mechanism of Dodecylamine on Carbon Steel. Acta Phys. -Chim. Sin., 2008, 24(02): 243-249.

URL:

http://www.whxb.pku.edu.cn/10.1016/S1872-1508(08)60013-3     OR     http://www.whxb.pku.edu.cn/Y2008/V24/I02/243

[1] GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[2] Yujing ZHANG,Xingchao DAI,Hongli WANG,Feng SHI. Catalytic Synthesis of Formamides with Carbon Dioxide and Amines[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 845-857.
[3] Zhihua ZHOU,Shumei XIA,Liangnian HE. Green Catalysis for Three-Component Reaction of Carbon Dioxide, Propargylic Alcohols and Nucleophiles[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 838-844.
[4] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[5] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[6] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[7] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[8] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[9] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[10] Zhou-Sheng MO,Yu-Cai QIN,Xiao-Tong ZHANG,Lin-Hai DUAN,Li-Juan SONG. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[11] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[12] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[13] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[14] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2388-2403.
[15] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.