Please wait a minute...
Acta Physico-Chimica Sinica  2007, Vol. 23 Issue (05): 765-768    DOI: 10.3866/PKU.WHXB20070528
Note     
Effects of the Adsorption of Oxygen on the Photocatalytic Activity of TiO2 Films Using PhotocurrentMethod
WU Lun-Peng; ZHAO Lian-Hua; ZHANG Hai-Ming; ZHAO Qing-Nan
Key Laboratory of Organism Functional Factors of the Changbai Mountain of the Ministry of Education, Yanji 133002, Jilin Province, P. R. China; Key Laboratory of Silicate Materials Science and Engineering of the Ministry of Education, Wuhan University of Technology, Wuhan 430070, P. R. China
Download:   PDF(266KB) Export: BibTeX | EndNote (RIS)      

Abstract  TiO2 thin films (anatase and rutile) were prepared on soda-lime glass substrates by sol-gel method. The effects of adsorbed oxygen on the photocatalytic activity of different TiO2 crystals were studied by photocurent measurement and XPS technology. The photocatalytic activity of the different TiO2 crystals (anatase and rutile) was evaluated by the degradation of cyclohexane. The results showed that anatase was more active than rutile, which was attributed to the higher capability of adsorbing oxygen and lower electron-hole recombination rates of the anatase.

Key wordsSol-gel method      TiO2 thin film      Photocurrent      Photocatalysis     
Received: 25 October 2006      Published: 21 April 2007
MSC2000:  O643  
Corresponding Authors: ZHAO Lian-Hua     E-mail: zhaolh03@yahoo.com.cn
Cite this article:

WU Lun-Peng; ZHAO Lian-Hua; ZHANG Hai-Ming; ZHAO Qing-Nan. Effects of the Adsorption of Oxygen on the Photocatalytic Activity of TiO2 Films Using PhotocurrentMethod. Acta Physico-Chimica Sinica, 2007, 23(05): 765-768.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20070528     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2007/V23/I05/765

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1519-1526.
[12] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 728-736.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 737-744.
[14] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 551-557.
[15] WANG Rui-Fen, WANG Fu-Ming, SONG Jin-Ling, AN Sheng-Li, WANG Xin. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 536-542.