Please wait a minute...
Acta Physico-Chimica Sinica  2003, Vol. 19 Issue (03): 278-282    DOI: 10.3866/PKU.WHXB20030321
Note     
Effect of Particle Size on Lithium Intercalation Performance of Graphite Anode
Chen Ji-Tao;Zhou Heng-Hui;Chang Wen-Bao;Ci Yun-Xiang
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871
Download:   PDF(1582KB) Export: BibTeX | EndNote (RIS)      

Abstract  Artificial graphite samples with different particle size ranging from 13 to 80 μm were prepared by sieving method. The lithium intercalation performances of these samples were investigated. The results showed that the particle size had distinct effect on lithium intercalation performances of graphite. When particle size of graphite decreased gradually from 80 μm to 13 μm, the irreversible capacity loss of graphite increased about 10%. However, the reversible capacity increased with the decrease of particle size until the latter reached 20 μm with which the graphite had the highest capacity. When the particle size decreased from 20 μm, the reversible capacity decreased also. It suggested that neither large nor small graphite particle is suitable for reversible lithium intercalation. The medium graphite particles have the optimum reversible capacity. The Brunauer-Emmett-Teller (BET) surface area was measured and it increased with the decrease of particle size. This trend could explain the change of lithium intercalation performances of graphite with particle size.

Key wordsLithium ion battery      Anode material      Graphite      Lithium intercalation performance      Particle Size     
Received: 24 June 2002      Published: 15 March 2003
Corresponding Authors: Chang Wen-Bao     E-mail: dxhx@chem.pku.edu.cn
Cite this article:

Chen Ji-Tao;Zhou Heng-Hui;Chang Wen-Bao;Ci Yun-Xiang. Effect of Particle Size on Lithium Intercalation Performance of Graphite Anode. Acta Physico-Chimica Sinica, 2003, 19(03): 278-282.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20030321     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2003/V19/I03/278

[1] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 845-852.
[2] WANG Quan-Jun, SUN Hong-Juan, PENG Tong-Jiang, FENG Ming-Zhu. Structure Development during the Cation Exchange Processes of Graphite Oxide[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 413-418.
[3] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.
[4] PENG Bo, XU Yao-Lin, MULDER Fokko M. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2127-2132.
[5] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2261-2267.
[6] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2293-2300.
[7] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2280-2286.
[8] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2287-2292.
[9] HUANG Jia-Jun, DONG Zhi-Jun, ZHANG Xu, YUAN Guan-Ming, CONG Ye, CUI Zheng-Wei, LI Xuan-Ke. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1699-1707.
[10] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 573-580.
[11] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming. Effects of Particle Size and Temperature on Surface Thermodynamic Functions of Cubic Nano-Cu2O[J]. Acta Physico-Chimica Sinica, 2016, 32(11): 2678-2684.
[12] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(11): 2737-2744.
[13] CHEN Cheng-Cheng, ZHANG Ning, LIU Yong-Chang, WANG Yi-Jing, CHEN Jun. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 349-355.
[14] SUN Xue-Mei, GAO Li-Jun. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1521-1526.
[15] WANG Qian-Wen, DU Xian-Feng, CHEN Xi-Zi, XU You-Long. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1437-1451.