Please wait a minute...
Acta Physico-Chimica Sinica  2003, Vol. 19 Issue (05): 441-444    DOI: 10.3866/PKU.WHXB20030513
Article     
Electrocatalytic Properties of Agglomerates of Pt Nanoparticles in Methanol Oxidation
Chen Wei;Sun Shi-Gang;Si Di;Chen Sheng-Pei
State Key Laboratory for Physical Chemistry of Solid Surfaces,Department of Chemistry,Xiamen University,Xiamen 361005
Download:   PDF(1572KB) Export: BibTeX | EndNote (RIS)      

Abstract  Agglomerates of Pt nanoparticles were synthesized by using H2 as reduction reagent and nafion as stabilizer. The electrode of agglomerates of Pt nanoparticles was prepared by dispersing the agglomerates onto glassy carbon surface and is denoted as Ptnag/GC.The average size of the agglomerates in colloid and on the surface of electrode were characterized to be around 400 nm using TEM and SEM, respectively. Cyclic voltammetry and in situ FTIR spectroscopy were employed to study electrocatalytic properties of the Ptnag/GC electrode towards methanol oxidation. It has been revealed that the agglomerates of Pt nanoparticles exhibit significant electrocatalytic activity for the oxidation of CH3OH.In comparison with CH3OH oxidation on an electrode of Pt thin film supported on Au, the oxidation potential has been shifted negatively about 300 mV on the Ptnag/GC. The results demonstrated also that the oxidation of CH3OH is a complex process, which may be influenced by the diffusion of CH3OH and controlled by the oxidation-reduction of the agglomerates of Pt nanoparticles on electrode surface. Linearly adsorbed CO species (COL) is the only intermediate that has been determined by in situ FTIR spectroscopy. The IR features of COL illustrated that the agglomerates of Pt nanoparticles exhibit abnormal infrared effects as other kind low-dimensional nanomaterial does.

Key wordsAgglomerates of Pt nanoparticles      Methanol      Electrocatalytic oxidation     
Received: 27 September 2002      Published: 15 May 2003
Corresponding Authors: Sun Shi-Gang     E-mail: sgsun@xmu.edu.cn
Cite this article:

Chen Wei;Sun Shi-Gang;Si Di;Chen Sheng-Pei. Electrocatalytic Properties of Agglomerates of Pt Nanoparticles in Methanol Oxidation. Acta Physico-Chimica Sinica, 2003, 19(05): 441-444.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20030513     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2003/V19/I05/441

[1] YI Yanhui, WANG Xunxun, WANG Li, YAN Jinhui, ZHANG Jialiang, GUO Hongchen. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 247-255.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1822-1827.
[3] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1628-1634.
[4] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1411-1420.
[5] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 769-779.
[6] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1785-1794.
[7] TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1473-1481.
[8] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Physico-Chimica Sinica, 2016, 32(5): 1175-1182.
[9] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 950-960.
[10] CHENG Xiao-Meng, LI Yu, CHEN Zong, LI Hong-Ping, ZHENG Xiao-Fang. A Comparative Study on theNMR Relaxation of Methanol in Sub-and Super-Critical Mixtures of CO2 and Methanol[J]. Acta Physico-Chimica Sinica, 2016, 32(11): 2671-2677.
[11] HU Si, ZHANG Qing, YIN Qi, ZHANG Ya-Fei, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Catalytic Conversion of Methanol to Propylene over HZSM-5 Modified by NaOH and (NH4)2SiF6[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1374-1382.
[12] ZHAO Jun-Feng, SUN Xiao-Li, LI Ji-Lai, HUANG Xu-Ri. Theoretical Study of Methanol C―H and O―H Bond Activation by PtRu Clusters[J]. Acta Physico-Chimica Sinica, 2015, 31(6): 1077-1085.
[13] LI Li, HE Xiao-Li, QIN Tao, DAI Fu-Tao, ZHANG Xiao-Hua, CHEN Jin-Hua. Dual-Sacrificial Template Synthesis of One-Dimensional Tubular Pt-Mn3O4-C Composite with Excellent Electrocatalytic Performance for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 927-932.
[14] CHEN Hong, WANG Shi-Xian, ZHAO Wan-Long, ZHANG Neng-Neng, ZHENG Ying-Ping, SUN Yue-Ming. Preparation of Pt/TiO2 Nanofibers and Their Electrocatalytic Activity towards Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 302-308.
[15] GAO Hai-Li, LI Xiao-Long, HE Wei, GUO Rui-Ting, CHAI Bo. One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2117-2123.