Please wait a minute...
Acta Phys. Chim. Sin.  2007, Vol. 23 Issue (03): 299-304    DOI: 10.1016/S1872-1508(07)60023-0
Article     
Effect of Doping Ions on Electrochemical Capacitance Properties of Polypyrrole Films
WANG Jie;XU You-Long;CHEN Xi;DU Xian-Feng;LI Xi-Fei
School of Electronic and Information Engineering, Xi′an Jiaotong University, Xi′an 710049, P. R. China
Download:   PDF(747KB) Export: BibTeX | EndNote (RIS)      

Abstract  Conducting polypyrrole films (PPy) doped with p-toluenesulfonate (TOS-), ClO-4, and Cl- were electro- chemically prepared, respectively. The electrochemical capacitance properties of the PPy films were investigated with cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscope (EIS) techniques. The morphology observation and structure analysis of PPy films were performed by scanning electron microscope (SEM) and X-ray diffraction (XRD). The results showed that PPy-Cl and PPy-TOS were characterized with a highly porous and ordered structure, which led to their fast ion switch processes. Moreover, they exhibited a rectangle-like shape of voltammetry characteristics even at a scanning rate of 50 mV·s-1, a linear variation of the voltage with respect to time in charge/discharge process and almost ideal capacitance behavior in low frequency even on deeply charged/discharged states in 1 mol·L-1 KCl solution. Furthermore, specific capacitance of PPy-Cl (polymerization charge of 2 mAh·cm-2) would reach 270 F·g-1 (scanning rate of 5 mV·s-1) or 175 F·g-1 (scanning rate of 200 mV·s-1) and its specific energy could reach 35.3 mWh·g-1. Moreover, with heavier doping ion (TOS-), PPy-TOS (polymerization charge of 2 mAh·cm-2) had a slightly smaller specific capacitance (146 F·g-1, scanning rate of 5 mV·s-1) but very rapidly charge/discharge ability (specific capacitance of 123.6 F·g-1 at scanning rate of 200 mV·s-1) and its specific power could reach 10 W·g-1. In addition, both PPy-TOS and PPy-Cl had a good cycleability. All of the above implied that the PPy-Cl and PPy-TOS were two kinds of promising electrode material for supercapacitors.

Key wordsPolypyrrole      Capacitance      Electrochemical polymerization      Doping ion      Supercapacitor     
Received: 18 October 2006      Published: 07 March 2007
Corresponding Authors: XU You-Long     E-mail: ylxu@mail.xjtu.edu.cn
Cite this article:

WANG Jie;XU You-Long;CHEN Xi;DU Xian-Feng;LI Xi-Fei. Effect of Doping Ions on Electrochemical Capacitance Properties of Polypyrrole Films. Acta Phys. Chim. Sin., 2007, 23(03): 299-304.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.1016/S1872-1508(07)60023-0     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2007/V23/I03/299

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. Chim. Sin., 2018, 34(1): 22-35.
[2] DU Wei-Shi, Lü Yao-Kang, CAI Zhi-Wei, ZHANG Cheng. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. Chim. Sin., 2017, 33(9): 1828-1837.
[3] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. Chim. Sin., 2017, 33(2): 305-313.
[4] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. Chim. Sin., 2017, 33(2): 329-343.
[5] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. Chim. Sin., 2017, 33(12): 2510-2516.
[6] LI Dao-Yan, ZHANG Ji-Chen, WANG Zhi-Yong, JIN Xian-Bo. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(11): 2245-2252.
[7] YU Cui-Ping, WANG Yan, CUI Jie-Wu, LIU Jia-Qin, WU Yu-Cheng. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(10): 1944-1959.
[8] ZENG Xiang-Dong, ZHAO Xiao-Yu, WEI Hui-Ge, WANG Yan-Fei, TANG Na, SHA Zuo-Liang. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. Chim. Sin., 2017, 33(10): 2035-2041.
[9] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2017, 33(1): 130-148.
[10] ZHOU Xiao, SUN Min-Qiang, WANG Geng-Chao. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. Chim. Sin., 2016, 32(4): 975-982.
[11] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 481-492.
[12] LIN You-Cheng, ZHONG Xin-Xian, HUANG Han-Xing, WANG Hong-Qiang, FENG Qi-Peng, LI Qing-Yu. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. Chim. Sin., 2016, 32(2): 474-480.
[13] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. Chim. Sin., 2016, 32(2): 493-502.
[14] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Phys. Chim. Sin., 2015, 31(6): 1105-1112.
[15] LI Zhao-Hui, LI Shi-Jiao, ZHOU Jin, ZHU Ting-Ting, SHEN Hong-Long, ZHUO Shu-Ping. Preparation and Supercapacitive Performance of N, S Co-Doped Activated Carbon Materials[J]. Acta Phys. Chim. Sin., 2015, 31(4): 676-684.