Please wait a minute...
Acta Phys. -Chim. Sin.  2002, Vol. 18 Issue (02): 188-192    DOI: 10.3866/PKU.WHXB20020220
Note     
Study on Kinetics of Synthesizing Spinel LiMn2O4 for Lithium-ion Battery Cathode
Zhao Ming-Shu;Zhai Yu-Chun;Tian Yan-Wen
School of Material and Metallurgy, Northeastern University, Shenyang 110004
Download:   PDF(1512KB) Export: BibTeX | EndNote (RIS)      

Abstract  The reaction processes including synthesis of LiMn2O4 with LiOH•H2O and MnO2 were studied by means of DTA under atmosphere pressure, and the result obtained could be applied as an important theoretical basis for preparing LiMn2O4. Table 1~3 show the activation energies of each reaction process obtained by using Doyle-Ozawa method and Kissinger method as follows : 66.3, 72.6, 128.1 and 113.9 kJ•mol-1. Reaction orders and frequency factors were determined by making use of Kissinger method. And the kinetic equations of each reaction were deduced. X-ray diffraction patterns(XRD), scanning electron microscope(SEM)result and size distribution measurements Fig.3~4 show that the synthesized LiMn2O4 possesses pure phase, regular appearance and normal distribution.

Key wordsLithium-ion battery      LiMn2O4      Synthesizing kinetics      Micro-characters     
Received: 23 July 2001      Published: 15 February 2002
Corresponding Authors: Zhao Ming-Shu     E-mail: zhaomshu@163.net
Cite this article:

Zhao Ming-Shu;Zhai Yu-Chun;Tian Yan-Wen. Study on Kinetics of Synthesizing Spinel LiMn2O4 for Lithium-ion Battery Cathode. Acta Phys. -Chim. Sin., 2002, 18(02): 188-192.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20020220     OR     http://www.whxb.pku.edu.cn/Y2002/V18/I02/188

[1] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[2] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[3] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[4] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[5] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[6] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[7] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[8] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[9] Sheng-Yi MIAO,Xian-Fu WANG,Cheng-Lin YAN. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 18-27.
[10] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300.
[11] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1999-2006.
[12] Zu-Guang YANG,Wei-Bo HUA,Jun ZHANG,Jiu-Hua CHEN,Feng-Rong HE,Ben-He ZHONG,Xiao-Dong GUO. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1056-1061.
[13] Li-Li CAI,Yue-Hua WEN,Jie CHENG,Gao-Ping CAO,Yu-Sheng YANG. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 969-974.
[14] Jian-Wen KOU,Zhao WANG,Li-Ying BAO,Yue-Feng SU,Yu HU,Lai CHEN,Shao-Yu XU,Fen CHEN,Ren-Jie CHEN,Feng-Chun SUN,Feng WU. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 717-722.
[15] ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(5): 905-912.