Please wait a minute...
Acta Physico-Chimica Sinica  2000, Vol. 16 Issue (02): 105-110    DOI: 10.3866/PKU.WHXB20000203
Article     
Thermal Decomposition Behavior of Mg(NO3)2 on γ-Al2O3 and Basicity of MgO/γ-Al2O3
Jiang De-En, Zhao Bi-Ying, Xie You-Chang
Institute of Physical Chemistry,Peking University,Beijing 100871
Download:   PDF(1708KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The state and thermal decomposition behavior of Mg(NO3)2 on γ-Al2O3 at different Mg loading were studied by XRD and TG DTA. The basicity of MgO/γ-Al2O3 with different Mg loading was investigated by CO2 TPD and compared with t hat of Mg Al mixed oxides derived from hydrotalcite. Results show that Mg(NO3)2 can disperse on γ Al2O3 as a monolayer and its dispersion determines the dispersion threshold of MgO on γ-Al2O3. Mg(NO3)2 in dispersion state has lower decomposition temperature than that in crystal state. The amount of basic sites per square meter on the surface of MgO/γ-Al2O3 shows a highest value around the loading of threshold, which indicates that the basicity of MgO/γ-Al2O3 originates from MgO in dispersion state. The basicity of MgO/γ-Al2O3 around the thresh old loading is comparable and even superior to that of Mg(Al)O derived from hydrotalcite. Since the texture and specific area of γ-Al2O3 can be easily adapted and there are various kinds of commercial γ-Al2O3 available, MgO/γ-Al2O3 is a promising solid base that may be found in use.



Key wordsMg(NO3)2/γ-Al2 O3      MgO/γ-Al2O3      Supported solid base      Thermal decomposition      CO2-TPD     
Received: 12 May 1999      Published: 15 February 2000
Corresponding Authors: Zhao Bi-Ying   
Cite this article:

Jiang De-En, Zhao Bi-Ying, Xie You-Chang. Thermal Decomposition Behavior of Mg(NO3)2 on γ-Al2O3 and Basicity of MgO/γ-Al2O3. Acta Physico-Chimica Sinica, 2000, 16(02): 105-110.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20000203     OR     http://www.whxb.pku.edu.cn/Y2000/V16/I02/105

[1] PENG Li-Juan, YAO Qian, WANG Jing-Bo, LI Ze-Rong, ZHU Quan, LI Xiang-Yuan. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 745-754.
[2] YU Hai-Yang, WANG Fang, LIU Qi-Chun, MA Qing-Yu, GU Zheng-Gui. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 344-355.
[3] JIN Cheng-Wei, WANG Ye, XU Su-Ling, ZHANG Jian-Jun. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3,4-Diethoxybenzoic Acid and 2,2'-Bipyridine[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2232-2240.
[4] XIONG Wen-Hui, ZHANG Wen-Chao, YU Chun-Pei, SHEN Rui-Qi, CHENG Jia, YE Jia-Hai, QIN Zhi-Chun. Preparation of Nanoporous CoFe2O4 and Its Catalytic Performance during the Thermal Decomposition of Ammonium Perchlorate[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2093-2100.
[5] HUO Jian-Xia, SONG Su-Wei, JIN Cheng-Wei, REN Ning, GENG Li-Na, ZHANG Jian-Jun. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the [Eu(4-MOBA)3(terpy)(H2O)]2 Complex[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 901-906.
[6] LI Jing, CHEN Li-Zhen, WANG Jian-Long, LAN Guan-Chao, HOU Huan, LI Man. Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3,5-Dinitro-1-oxygen-3,5-diazacyclohexane[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2049-2056.
[7] LUO Xiao-Lin, YANG De-Suo, YUAN Chun-Lan, LUO Xu-Mei, CHEN Ya-Shao. Catalytic Performance of Polycrystalline Cu2O with Different Structures on the Thermal Decomposition of Ammonium Perchlorate[J]. Acta Physico-Chimica Sinica, 2014, 30(3): 520-526.
[8] ZHAO Ning-Ning, HE Cui-Cui, LIU Jian-Bing, MA Hai-Xia, AN Ting, ZHAO Feng-Qi, HU Rong-Zu. Preparation and Characterization of Superthermite Al/Fe2O3 and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine[J]. Acta Physico-Chimica Sinica, 2013, 29(12): 2498-2504.
[9] WANG Fang, SHENG Shen-Jun, GUO Ge-Pu, MA Qing-Yu. Thermal Stability and Dynamic Thermal Mechanical Properties of Microcellular Polylactic Acid Scaffolds[J]. Acta Physico-Chimica Sinica, 2013, 29(12): 2505-2512.
[10] HU Rong-Zu, ZHAO Feng-Qi, GAO Hong-Xu, MA Hai-Xia, ZHANG Hai, Xu Kang-Zhen, Zhao Hong-An, YAO Er-Gang. Thermal Safety of 2,2,2-Trinitroethyl-N-nitromethyl Amine[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2071-2078.
[11] WANG Xue-Bao, LI Jin-Qing, LUO Yun-Jun. Effect of Drying Methods on the Structure and Thermal Decomposition Behavior of Ammonium Perchlorate/Graphene Composites[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2079-2086.
[12] PENG Min-Jun, LU Gui-Bin, CHEN Wang-Hua, CHEN Li-Ping, LÜ Jia-Yu. Thermal Decomposition Characteristic and Kinetics of AIBN in Aniline Solvent[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2095-2100.
[13] ZHANG Li, CHEN Lang, WANG Chen, WU Jun-Ying. Molecular Dynamics Study of the Effect of H2O on the Thermal Decomposition of α Phase CL-20[J]. Acta Physico-Chimica Sinica, 2013, 29(06): 1145-1153.
[14] ZHOU Ting-Ting, SHI Yi-Ding, HUANG Feng-Lei. Thermal Decomposition Mechanism of β-HMX under High Pressures via ReaxFF Reactive Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, 2012, 28(11): 2605-2615.
[15] AN Ting, CAO Hui-Qun, ZHAO Feng-Qi, REN Xiao-Ning, TIAN De-Yu, XU Si-Yu, GAO Hong-Xu, TAN Yi, XIAO Li-Bai. Preparation and Characterization of Ag/CNTs Nanocomposite and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine[J]. Acta Physico-Chimica Sinica, 2012, 28(09): 2202-2208.