Please wait a minute...
Acta Physico-Chimica Sinica  2003, Vol. 19 Issue (11): 1030-1034    DOI: 10.3866/PKU.WHXB20031109
Article     
Effect of Cell Temperature on the Electrochemical Reaction of LiNi3/8Co2/8Mn3/8O2
Li Jian-Gang;Wan Chun-Rong;Yang Dong-Ping;Yang Zhang-Ping
Institute of Nuclear Energy Technology, Tsinghua University, Beijing 102201; Beijing Continental Battery Corporation Limited, Beijing 100176
Download:   PDF(1673KB) Export: BibTeX | EndNote (RIS)      

Abstract  The effects of cell temperature on the rate discharge capability, lithium ion diffusion rate and charge transfer activity of LiNi3/8Co2/8Mn3/8O2 were investigated by using X-ray diffractometry(XRD), X-ray photoelectron spectroscopy(XPS), constant-current charge-discharge test, cyclic voltammetry and electrochemical impedance spectroscopy(EIS). The experimental data show that the rate discharge capability of LiNi3/8Co2/8Mn3/8O2 is improved by increasing cell temperature. Both the charge transfer activity and the lithium ion diffusion rate in LiNi3/8Co2/8Mn3/8O2 increase at elevated temperatures. The activation energy for charge transfer is more than twice that for the lithium ion diffusion. The results indicate that the electrochemical reaction kinetics of LiNi3/8Co2/8Mn3/8O2 is mainly limited by charge transfer process. The charge transfer process is more affected by temperature than the lithium diffusion process. Improvement of the rate discharge capability of LiNi3/8Co2/8Mn3/8O2 at elevated temperatures is mainly caused by the increase of charge transfer rate in LiNi3/8Co2/8Mn3/8O2.

Key wordsLiNi3/8Co2/8Mn3/8O2      Cell temperature      Electrochemical property      Lithium-ion battery     
Received: 14 April 2003      Published: 15 November 2003
Corresponding Authors: Li Jian-Gang     E-mail: gang66@eyou.com
Cite this article:

Li Jian-Gang;Wan Chun-Rong;Yang Dong-Ping;Yang Zhang-Ping. Effect of Cell Temperature on the Electrochemical Reaction of LiNi3/8Co2/8Mn3/8O2. Acta Physico-Chimica Sinica, 2003, 19(11): 1030-1034.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20031109     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2003/V19/I11/1030

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[5] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[6] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 18-27.
[10] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2293-2300.
[11] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1999-2006.
[12] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinica, 2016, 32(5): 1056-1061.
[13] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 969-974.
[14] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 717-722.
[15] ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 905-912.