Please wait a minute...
Acta Physico-Chimica Sinica  2004, Vol. 20 Issue (05): 546-549    DOI: 10.3866/PKU.WHXB20040520
Note     
Effect of Microstructure’s Change on Electrochemical Capacitance of Carbon Nanotubes
Jiang Qi;Lu Xiao-Ying;Zhao Yong;Yu Zuo-Long
School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031;Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041
Download:   PDF(1683KB) Export: BibTeX | EndNote (RIS)      

Abstract  Activated carbon nanotubes were obtained by the activation of carbon nanotubes using KOH as activator at high temperature. The specific surface area and pore volume of the obtained activated carbon nanotubes were 3 and 1.5 times as large as that of the pristine carbon nanotubes, respectively. The two kinds of carbon nanotubes were used as the electrode materials of electrochemical supercapacitors and the simulated electrochemical supercapacitors were assembled in the glove box filled with argon air. The electrochemical capacitance of the activated carbon nanotubes was twice as large as that of the pristine carbon nanotubes by test under constant current chargingdischarging. So, the activated carbon nanotubes with a short cut length and rough tube surface are more suitable in using as the electrode materials of electrochemical supercapacitors than the normal carbon nanotubes.

Key wordsElectrochemical supercapacitors      Carbon nanotubes (CNTs)      Activation     
Received: 15 October 2003      Published: 15 May 2004
Corresponding Authors: Jiang Qi     E-mail: jiangqi66@163.com
Cite this article:

Jiang Qi;Lu Xiao-Ying;Zhao Yong;Yu Zuo-Long. Effect of Microstructure’s Change on Electrochemical Capacitance of Carbon Nanotubes. Acta Physico-Chimica Sinica, 2004, 20(05): 546-549.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20040520     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2004/V20/I05/546

[1] ZHAN Lin-Jun, SUN Xiao-Yan, ZHOU Ying, ZHU Qiu-Lian, CHEN Yin-Fei, Lu Han-Feng. Deactivation Mechanism of CeO2-Based Mixed Oxide Catalysts Supported on SiO2[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1474-1482.
[2] HU Yi-Hao, SONG Tong-Yang, WANG Yue-Juan, HU Geng-Sheng, XIE Guan-Qun, LUO Meng-Fei. Gas Phase Dehydrochlorination of 1,1,2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 1017-1026.
[3] TONG Jing, LIU Lu, ZHANG Duo, ZHENG Xu, CHEN Xia, YANG Jia-Zhen. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Physico-Chimica Sinica, 2017, 33(3): 513-519.
[4] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1998-2003.
[5] LIU Zhao-Xin, LI Wei-Bin. Catalytic Activity and Deactivation of Toluene Combustion on Rod-Like Copper-Manganese Mixed Oxides[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1795-1800.
[6] YUAN Ping, WANG Hao, XUE Yan-Feng, LI Yan-Chun, WANG Kai, DONG Mei, FAN Wei-Bin, QIN Zhang-Feng, WANG Jian-Guo. Catalytic Properties of Different Crystal Sizes for ZSM-5 Zeolites on the Alkylation of Benzene with Methanol and Optimization of the Reaction Conditions[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1775-1784.
[7] HU Si, ZHANG Qing, GONG Yan-Jun, ZHANG Ying, WU Zhi-Jie, DOU Tao. Deactivation and Regeneration of HZSM-5 Zeolite in Methanol-to-Propylene Reaction[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1785-1794.
[8] ZHAO Jun-Feng, SUN Xiao-Li, HUANG Xu-Ri, LI Ji-Lai. A Theoretical Study on the Reactivity and Charge Effect of PtRu Clusters toward Methanol Activation[J]. Acta Physico-Chimica Sinica, 2016, 32(5): 1175-1182.
[9] KONG Ling-Ming, ZHU Bao-Lin, PANG Xian-Yong, WANG Gui-Chang. First-Principles Study on TiO2-B with Oxygen Vacancies as a Negative Material of Rechargeable Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 656-664.
[10] YIN Rui-Li, CHEN Li-Ping, CHEN Wang-Hua, WU Ke, ZHANG Cai-Xing, LI Han, YU Cheng. Kinetic Compensation Effect under Two Different Calorimetric Modes for Thermal Decomposition[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 391-398.
[11] WANG Lei, YIN Han-Mei, WANG Jian-Hao, WU Li-Zhi, LIU Yue-Ming. Synthesis and Catalytic Oxidation Performance of B-TS-1[J]. Acta Physico-Chimica Sinica, 2016, 32(10): 2574-2580.
[12] YANG Xiao-Nan, YAN Yong-De, ZHANG Mi-Lin, LI Xing, XUE Yun, HAN Wei. Electrochemical Behavior and Extraction Efficiency Evaluation of Gd in Chloride Molten Salt System[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 920-926.
[13] LI Jing, CHEN Li-Zhen, WANG Jian-Long, LAN Guan-Chao, HOU Huan, LI Man. Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3,5-Dinitro-1-oxygen-3,5-diazacyclohexane[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2049-2056.
[14] GUO Zhang-Long, HUANG Li-Qiong, CHU Wei, LUO Shi-Zhong. Effects of Promoter on NiMgAl Catalyst Structure and Performance for Carbon Dioxide Reforming of Methane[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 723-728.
[15] WANG Jia-Sheng, HAN Shu-Min, LI Yuan, SHEN Na, ZHANG Wei. Hydriding/Dehydriding Properties of an MgH2+20%(w) MgTiO3 Composite[J]. Acta Physico-Chimica Sinica, 2014, 30(12): 2323-2327.