Please wait a minute...
Acta Phys. -Chim. Sin.  2001, Vol. 17 Issue (06): 526-530    DOI: 10.3866/PKU.WHXB20010611
Article     
Discharge Process of Insertion Electrodes Controlled by Lithium Ion Diffusion in Solid Materials
Tang Zhi-Yuan;Xue Jian-Jun;Li Jian-Gang;Wang Zhan-Liang
School of Chemical Engineering and Technology,Tianjin University,Tianjin 300072
Download:   PDF(1459KB) Export: BibTeX | EndNote (RIS)      

Abstract  We have analyzed the galvanostatic discharge process of insertion electrodes controlled by lithium ion diffusion in solid materials. It is demonstrated by mathematic calculation that the discharge capacity of insertion electrode depends on the value of Q(defined as the ratio of discharge hour rate and diffusion time constant). The galvanostatic discharge curve of spinel LiMn2O4 cathode and graphite anode have been simulated. The effect of particle size on the discharge capacity of spinel LiMn2O4 cathode and graphite anode is evaluated.

Key wordsSolid diffusion      Lithium ion battery      Insertion electrode      Discharge capacity      Lithium manganese oxide(LiMn2O4)       Graphite     
Received: 11 December 2000      Published: 15 June 2001
Corresponding Authors: Tang Zhi-Yuan     E-mail: zytang@public.tpt.tj.cn
Cite this article:

Tang Zhi-Yuan;Xue Jian-Jun;Li Jian-Gang;Wang Zhan-Liang. Discharge Process of Insertion Electrodes Controlled by Lithium Ion Diffusion in Solid Materials. Acta Phys. -Chim. Sin., 2001, 17(06): 526-530.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20010611     OR     http://www.whxb.pku.edu.cn/Y2001/V17/I06/526

[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Wan-Long LI,Yue-Jiao LI,Mei-Ling CAO,Wei QU,Wen-Jie QU,Shi CHEN,Ren-Jie CHEN,Feng WU. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2261-2267.
[3] Ya-Dong LI,Yu-Feng DENG,Zhi-Yi PAN,Yin-Ping WEI,Shi-Xi ZHAO,Lin GAN. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2293-2300.
[4] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[5] Jia-Jun HUANG,Zhi-Jun DONG,Xu ZHANG,Guan-Ming YUAN,Ye CONG,Zheng-Wei CUI,Xuan-Ke LI. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1699-1707.
[6] Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 573-580.
[7] Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2737-2744.
[8] Qian-Wen. WANG,Xian-Feng. DU,Xi-Zi. CHEN,You-Long. XU. TiO2 Nanotubes as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1437-1451.
[9] ZENG Yu-Qun, GUO Yong-Sheng, WU Bing-Bin, HONG Xiang, WU Kai ZHONG, Kai-Fu. Synthesis and Electrochemical Performance of Plastic Crystal Compound-Based Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1351-1358.
[10] XUE Qing-Rui, LI Jian-Ling, XU Guo-Feng, HOU Peng-Fei, YAN Gang, DAI Yu, WANG Xin-Dong, GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1667-1673.
[11] ZHU Zhi, QI Lu, LI Wei, LIAO Xi-Ying. Preparation and Electrochemical Performance of 5 V LiNi0.5Mn1.5O4 Cathode Material by the Composite Co-Precipitation Method for High Energy/High Power Lithium Ion Secondary Batteries[J]. Acta Phys. -Chim. Sin., 2014, 30(4): 669-676.
[12] WU Yue, LIU Xing-Quan, ZHANG Zheng, ZHAO Hong-Yuan. Preparation and Characterization of M(Ⅱ) and M(Ⅳ) Iso-Molar Co-Doped LiMn1.9Mg0.05Ti0.05O4 Cathode Materials for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2283-2290.
[13] ZHONG Yan-Jun, LI Jun-Tao, WU Zhen-Guo, ZHONG Ben-He, GUO Xiao-Dong, HUANG Ling, SUN Shi-Gang. Synthesis of Na2MnPO4F/C with Different Carbon Sources and Their Performances as Cathode for Lithium Ion Battery[J]. Acta Phys. -Chim. Sin., 2013, 29(09): 1989-1997.
[14] ZHU Qi-Rong, LI Hui-Qin, LI Ning, CHAI Jing, GAO Run-Gang, LIANG Qi. Nanotribological and Wear Properties of Graphene[J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1582-1587.
[15] LIU Nian-Ping, SHEN Jun, GUAN Da-Yong, LIU Dong, ZHOU Xiao-Wei, LI Ya-Jie. Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 966-972.