Please wait a minute...
Acta Phys. -Chim. Sin.  2004, Vol. 20 Issue (04): 436-439    DOI: 10.3866/PKU.WHXB20040423
Comparison of Methanol Electrooxidation on Carbon Supported Pt and PtRu Catalysts
Peng Cheng;Cheng Xuan;Zhang Ying;Chen Ling;Fan Qing-Bai
Department of Materials Science and Engineering,Department of Chemistry,State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005,China;Gas Technology Institute, Des Plaines, IL 60018,USA
Download:   PDF(1448KB) Export: BibTeX | EndNote (RIS)      

Abstract  The methanol electrooxidation behaviors on commercial carbon supported Pt and PtRu catalysts in acid solution were compared by carrying out electrochemical studies. The potentiodynamic and potentiostatic experimental results showed that the PtRu/C has a higher electrocatalytic activity for the electrocatalytic oxidation of methanol than the Pt/C.Alloy formation of Ru with Pt not only modified the characteristics of H2 adsorption on the surface of catalyst but also shifted cathodically the reduction peaks of metal oxide on the cathodic sweep with respect to Pt/C. The interaction of CH3OH with Ru is a temperatureactivated process requiring elevated temperature.

Key wordsDirect methanol fuel cell      Methanol electrooxidation       Electrocatalytic activity      Hydrogen adsorption      Catalyst     
Received: 26 August 2003      Published: 15 April 2004
Corresponding Authors: Cheng Xuan     E-mail:
Cite this article:

Peng Cheng;Cheng Xuan;Zhang Ying;Chen Ling;Fan Qing-Bai. Comparison of Methanol Electrooxidation on Carbon Supported Pt and PtRu Catalysts. Acta Phys. -Chim. Sin., 2004, 20(04): 436-439.

URL:     OR

[1] Zhe WANG,Shanjun MAO,Haoran LI,Yong WANG. How to Synthesize Vitamin E[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 598-617.
[2] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[3] Hengwei WANG,Junling LU. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1334-1357.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[5] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[6] Pei-Yi LIAO,Chen ZHANG,Li-Jun ZHANG,Yan-Zhang YANG,Liang-Shu ZHONG,Xiao-Ya GUO,Hui WANG,Yu-Han SUN. Influences of Cu Content on the Cu/Co/Mn/Al Catalysts Derived from Hydrotalcite-Like Precursors for Higher Alcohols Synthesis via Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1672-1680.
[7] Ling-Xiao HU,Lian WANG,Fei WANG,Chang-Bin ZHANG,Hong HE. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1681-1688.
[8] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[9] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[10] Yu-Fen HUANG,Hai-Long ZHANG,Zheng-Zheng YANG,Ming ZHAO,Mu-Lan HUANG,Yan-Li LIANG,Jian-Li WANG,Yao-Qiang CHEN. Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[11] Shuai-Qi SUN,Yan-Hui YI,Li WANG,Jia-Liang ZHANG,Hong-Chen GUO. Preparation and Performance of Supported Bimetallic Catalysts for Hydrogen Production from Ammonia Decomposition by Plasma Catalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1123-1129.
[12] Yi-Hao HU,Tong-Yang SONG,Yue-Juan WANG,Geng-Sheng HU,Guan-Qun XIE,Meng-Fei LUO. Gas Phase Dehydrochlorination of 1, 1, 2-Trichloroethane over Zn/SiO2 Catalysts: Acidity and Deactivation[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1017-1026.
[13] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 869-885.
[14] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.
[15] Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.