Please wait a minute...
Acta Physico-Chimica Sinica  2008, Vol. 24 Issue (03): 459-464    DOI: 10.3866/PKU.WHXB20080319
Effect of Gold Doping on the Photocatalytic Activity of the Anatase TiO2
LU Han-Feng; ZHOU Ying; XU Bo-Qing; CHEN Yin-Fei; LIU Hua-Zhang
State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China; Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
Download:   PDF(973KB) Export: BibTeX | EndNote (RIS)      

Abstract  Combined with supercritical ethanol drying, anatase Au/TiO2 and Au-TiO2 with 0.2%(atom fraction) Au content were synthesized by the deposition-precipitation (DP) and the coprecipitation (CP) respectively, and characterized with XRD, BET, Raman, XPS, and TEM. The activity was investigated using the photocatalytical degradation of methyl orange as probe. The results showed that the Au/TiO2 dried at 110 ℃ had a very high photocatalytic activity, the first-order reaction rate constans were 3.2 and 4.1 times higher than those of pure TiO2 and commercial Degussa-P25 photocatalyst respectively. The activity of Au/TiO2 decreased after thermal treatment or reduction in hydrogen due to the reduction of Au3+. A suitable amount of Au3+ on the surface of TiO2 as a trap for photogenerated electron can be beneficial to improving the efficiency of the photocatalytic oxidation process. The Au-TiO2 did not improve the photocatalytic activity of TiO2. The sample with higher crystallization degree after thermal treatment had the higher activity. But when the sample was treated in 800 ℃, the Au would be reduced and moved from the bulk to the surface of TiO2, which resulted in the increase of lattice oxygen vacancy and the decrease of activity.

Key wordsGold      Doping      Oxidation state      Anatase TiO2      Methyl orange      Photocatalysis     
Received: 13 September 2007      Published: 15 January 2008
MSC2000:  O643  
Corresponding Authors: CHEN Yin-Fei     E-mail:
Cite this article:

LU Han-Feng; ZHOU Ying; XU Bo-Qing; CHEN Yin-Fei; LIU Hua-Zhang. Effect of Gold Doping on the Photocatalytic Activity of the Anatase TiO2. Acta Physico-Chimica Sinica, 2008, 24(03): 459-464.

URL:     OR

[1] XU Li-Gang, QIU Wei, CHEN Run-Feng, ZHANG Hong-Mei, HUANG Wei. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 36-48.
[2] YAN Hui-Jun, LI Biao, JIANG Ning, XIA Ding-Guo. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1781-1788.
[3] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1875-1883.
[4] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[5] ZHOU Yang, LI Gao. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1297-1309.
[6] HU Xue-Jiao, GAO Guan-Bin, ZHANG Ming-Xi. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1324-1337.
[7] WANG Li, LU Dan-Feng, GAO Ran, CHENG Jin, ZHANG Zhe, QI Zhi-Mei. Theoretical Analyses and Chemical Sensing Application of Surface Plasmon Resonance Effect of Nanoporous Gold Films[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1223-1229.
[8] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 590-601.
[9] ZHENG Yan-Gong, ZHU Li-Na, LI Han-Yu, JIAN Jia-Wen, DU Hai-Ying. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 573-581.
[10] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 399-406.
[11] JING Tao, DAI Ying. Development of Solid Solution Photocatalytic Materials[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 295-304.
[12] CHEN Xiao-Yu, WANG Jing-Dong, YU An-Chi. Effect of Surrounding Media on Ultrafast Plasmon Dynamics of Gold Nanoparticles[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2184-2190.
[13] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2072-2081.
[14] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2082-2091.
[15] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 80-102.