Please wait a minute...
Acta Physico-Chimica Sinica  2008, Vol. 24 Issue (08): 1366-1370    DOI: 10.3866/PKU.WHXB20080807
Article     
Adsorption of Methyl, Amido and Methylamine Species on the Clean and C(N, O) Modified Mo(100) Surfaces
LV Cun-Qin; LING Kai-Cheng; SHANG Zhen-Feng; WANG Gui-Chang
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China; College of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, Shanxi Province, P. R. China; College of Chemistry, Nankai University, Tianjin 300071, P. R. China
Download:   PDF(842KB) Export: BibTeX | EndNote (RIS)      

Abstract  The adsorption of the species(CH3, NH2, and CH3NH2) on clean and carbon(nitrogen or oxygen) modified
Mo(100) surfaces has been investigated by the first-principles DFT-GGA calculations with the slab model. The calculated results showed that the adsorption energies of the adsorbed species(CH3, NH2 and CH3NH2) changed a little with the coverage of θ=1/6 ML (monolayer); but an obvious change could be observed at the relative higher coverage (θ=1/4 ML). In addition, it was found that the adsorption energies were lower on the modified Mo(100) surface as compared with the results on clean Mo(100) surface, and the activity of the Mo(100) surface decreased in the presence of the pre-adsorbed C(N, O) atoms with the order of C>N>O. It may be due to the reason that these electronegative atoms reduce the capability of electron donation of the metal, which results in the downshift of the surface metal atom d-band center. By the analysis of the density of state(DOS) projected onto Mo d-band, it can be found that d-band center only account for the diversification of the surface caused by the pre-adsorbed atoms, whereas the dz2-center can explain the changing trend of the adsorption energies more exactly.


Key wordsDFT-GGA      Slab model      Adsorption      Mo(100)      C(N, O) modified Mo(100) surfaces     
Received: 21 March 2008      Published: 11 June 2008
MSC2000:  O641  
Corresponding Authors: LING Kai-Cheng; WANG Gui-Chang     E-mail: wangguichang@nankai.edu.cn;lingkc@tyut.edu.cn
Cite this article:

LV Cun-Qin; LING Kai-Cheng; SHANG Zhen-Feng; WANG Gui-Chang. Adsorption of Methyl, Amido and Methylamine Species on the Clean and C(N, O) Modified Mo(100) Surfaces. Acta Physico-Chimica Sinica, 2008, 24(08): 1366-1370.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20080807     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2008/V24/I08/1366

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 286-295.
[2] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1898-1904.
[3] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1846-1854.
[4] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1236-1241.
[5] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 960-967.
[6] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 709-728.
[7] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 426-434.
[8] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2013-2021.
[9] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2029-2034.
[10] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2022-2028.
[11] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1998-2003.
[12] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2264-2270.
[13] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2133-2145.
[14] JING Peng-Fei, LIU Hui-Jun, ZHANG Qin, HU Sheng-Yong, LEI Lan-Lin, FENG Zhi-Yuan. Kinetics and Thermodynamics of Adsorption of Benzil-Bridged β-Cyclodextrin on Uranium(VI)[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1933-1940.
[15] JIAN Yuan, MU Wan-Jun, LIU Ning, PENG Shu-Ming. Removal of Sr2+ Ions by Ta-Doped Hexagonal WO3: Zeta Potential Measurements and Adsorption Mechanism Determination[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2052-2058.