Please wait a minute...
Acta Physico-Chimica Sinica  2008, Vol. 24 Issue (07): 1165-1168    DOI: 10.3866/PKU.WHXB20080708
Article     
Hydrothermal Preparation and Photoluminescence Property of Co-Doped ZnO Nanorods
WANG Bai-Qi; XIA Chun-Hui; FU Qiang; WANG Peng-Wei; SHAN Xu-Dong; YU Da-Peng
School of Public Health, Tianjin Medical University, Tianjin 300070, P. R. China; Electron Microscopy Laboratory, State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, P. R. China; Chemistry Department, Qiqihaer Medical College, Qiqihaer 161042, Heilongjiang Province, P. R. China
Download:   PDF(825KB) Export: BibTeX | EndNote (RIS)      

Abstract  Pure and Co-doped ZnO nanorods were synthesized by hydrothermal method at low temperature using Zn(NO3)2·6H2O and Co(NO3)2·6H2O as raw materials. The as-prepared samples were studied by XRD, EDS, TEM, and HRTEM, the photoluminescence (PL) property of the samples was principally investigated by PL spectroscopy. The results showed that the crystallinities of pure and ZnO:Co nanorods were rather well. Co atoms substituted Zn atoms positions to incorporate into nanocrystal, the dopant content was about 2%(atomic fraction). The average diameter and length of pure ZnO nanorods were about 20 and 180 nm, whereas the corresponding parameters of doped nanorods were respectively about 15 and 200 nm. This indicated that Co doping could influence the growth of ZnO nanorods. In addition, the Co doping could tune the energy level structure and enrich the surface states of ZnO nanorods, which led to emission peak redshift in UV region and luminescence enhancement in visible light region.

Key wordsZnO nanorods      Co doping      Hydrothermal method      Photoluminescence (PL)     
Received: 25 February 2008      Published: 26 May 2008
MSC2000:  O649  
Corresponding Authors: WANG Bai-Qi; YU Da-Peng     E-mail: wbqpaper@126.com;yudp@pku.edu.cn
Cite this article:

WANG Bai-Qi; XIA Chun-Hui; FU Qiang; WANG Peng-Wei; SHAN Xu-Dong; YU Da-Peng. Hydrothermal Preparation and Photoluminescence Property of Co-Doped ZnO Nanorods. Acta Physico-Chimica Sinica, 2008, 24(07): 1165-1168.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20080708     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2008/V24/I07/1165

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 168-176.
[2] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 551-557.
[3] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1421-1429.
[4] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Physico-Chimica Sinica, 2015, 31(6): 1105-1112.
[5] WANG Ruo-Xi, ZHANG Dong-Ju, LIU Cheng-Bu. Theoretical Study of Adsorption of Chlorinated Phenol Pollutants on Co-Doped Boron Nitride Nanotubes[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 877-884.
[6] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 783-792.
[7] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 268-276.
[8] QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, 2015, 31(12): 2332-2340.
[9] YU Hua-Feng, ZHANG Guo-Pei, HAN Li-Na, CHANG Li-Ping, BAO Wei-Ren, WANG Jian-Cheng. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2165-2173.
[10] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, 2015, 31(1): 153-158.
[11] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Physico-Chimica Sinica, 2015, 31(1): 90-98.
[12] LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites[J]. Acta Physico-Chimica Sinica, 2014, 30(8): 1474-1480.
[13] WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan. Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Physico-Chimica Sinica, 2014, 30(11): 2077-2084.
[14] TANG Jia-Yong, CAO Pei-Qi, FU Yan-Bao, LI Peng-Hui, MA Xiao-Hua. Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, 2014, 30(10): 1876-1882.
[15] ZHAO Ning-Ning, HE Cui-Cui, LIU Jian-Bing, MA Hai-Xia, AN Ting, ZHAO Feng-Qi, HU Rong-Zu. Preparation and Characterization of Superthermite Al/Fe2O3 and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine[J]. Acta Physico-Chimica Sinica, 2013, 29(12): 2498-2504.