Please wait a minute...
Acta Phys. -Chim. Sin.  2009, Vol. 25 Issue (03): 555-560    DOI: 10.3866/PKU.WHXB20090326
Electrochemical Behaviour of the Composite Polymer Electrolyte P(VDF-HFP)-PMMA/CaCO3(SiO2)
 ZHANG Guo-Qiang, MA Li, WU Zhong-Jie, ZHANG Hai-Yan, NI Pei
Faculty of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P, R. China; McNair Technology Co., Ltd., Dongguan 523800, Guangdong Province, P. R. China
Download:   PDF(1365KB) Export: BibTeX | EndNote (RIS)      


Electrochemical behavior of the composite polymer electrolyte (CPE) prepared from polyvinylidene fluoride-co-hexafluoropropylene(P(VDF-HFP)), poly(methyl methacrylate) (PMMA), and nanosized CaCO3 (SiO2) particles was investigated by confocal laser scanning microscopy, X-ray diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Results show that CPEs have many micropores, and that the addition of PMMA can increase the absorption potential of the liquid electrolyte and therefore improve ionic conductivity. The best performance of CPE was found at a P(VDF-HFP)/PMMAmass ratio of 1:1. The composite polymer electrolyte that was produced by adding nanosized CaCO3 and SiO2 to a P(VDF-HFP)-PMMA base keeps the amorphous structure of the original polymer base. The ionic conductivity of CPE can reach 3.42 mS·cm-1 and the electrochemical window can be up to 4.8 V at room temperature. A test on Li/CPE/GMS cells showed that the composite polymer electrolyte was compatible with graphite anodes. The battery made from Li/CPE(CaCO3)/LiCoO2 was shown to have a superior rate discharging performance to Li/CPE(SiO2)/LiCoO2.

Key wordsLi-ion battery      Composite polymer electrolyte      P(VDF-HFP)-PMMA      Nanosized CaCO3      Nanosized SiO2     
Received: 03 September 2008      Published: 04 December 2008
MSC2000:  O646  
Corresponding Authors: ZHANG Guo-Qing     E-mail:
Cite this article:

ZHANG Guo-Qiang, MA Li, WU Zhong-Jie, ZHANG Hai-Yan, NI Pei. Electrochemical Behaviour of the Composite Polymer Electrolyte P(VDF-HFP)-PMMA/CaCO3(SiO2). Acta Phys. -Chim. Sin., 2009, 25(03): 555-560.

URL:     OR

[1] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2280-2286.
[2] Xia-Xing. SHI,Shi-Xuan. LIAO,Bing. YUAN,Yan-Jun. ZHONG,Ben-He. ZHONG,Heng. LIU,Xiao-Dong. GUO. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1527-1534.
[3] Xue-Mei. SUN,Li-Jun. GAO. Preparation and Electrochemical Properties of Carbon-Coated CoCO3 as an Anode Material for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1521-1526.
[4] LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2014, 30(9): 1650-1658.
[5] ZHENG Jie-Yun, WANG Rui, LI Hong. Fabrication and Electrochemical Behavior of a Pure-Phase Li2MnO3 Thin Film for Cathode Material of Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2014, 30(10): 1855-1860.
[6] XU Ke, SHEN Lai-Fa, MI Chang-Huan, ZHANG Xiao-Gang. Synthesis and Electrochemical Performance of Graphene Modified LiFePO4 Cathode Materials[J]. Acta Phys. -Chim. Sin., 2012, 28(01): 105-110.
[7] CUI Wen-Yu, AN Mao-Zhong, YANG Pei-Xia, ZHANG Jin-Qiu. Cathodic and Thermal Stabilities of the P(VdF-HFP)-Based Ionic Liquid Composite Polymer Electrolyte[J]. Acta Phys. -Chim. Sin., 2011, 27(01): 78-84.
[8] TAN Xiao-Lan, CHENG Xin-Qun, MA Yu-Lin, ZUO Peng-Jian, YIN Ge-Ping. Film Formation and Cycleability of LiBOB-Based Electrolyte[J]. Acta Phys. -Chim. Sin., 2009, 25(10): 1967-1971.
[9] ZHONG Mei-E, ZHOU Zhi-Hui, ZHOU Zhen-Tao. Electrochemical Performance of High-Density LiFePO4/C Composites Synthesized by Solid State-Carbothermal Reduction Method[J]. Acta Phys. -Chim. Sin., 2009, 25(08): 1504-1510.
[10] HU Guo-Rong, CAO Yan-Bing, PENG Zhong-Dong, DU Ke, JIANG Qing-Lai. Preparation of Li2FeSiO4 Cathode Material for Lithium-Ion Batteries by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2009, 25(05): 1004-1008.
[11] LI Fan-Qun; LAI Yan-Qing; ZHANG Zhi-An; GAO Hong-Quan; YANG Juan. Electrochemical Behaviors of Et4NBF4+LiPF6/EC+PC+DMC Electrolyte on Graphite Electrode[J]. Acta Phys. -Chim. Sin., 2008, 24(07): 1302-1306.
[12] LEE Meng-Lung; LEE Yi-Da; CHANG Chie-Tai; GAO Tong-Han; LEE Torng-Jinn. Application and Technology of Aluminum Bag Lithium-Ion Polymer Battery[J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 100-106.
[13] AN Hong-Li; WU Ning-Ning; LEI Xiang-Li; XU Jin-Long; QI Lu. Electrochemical Performance of LithiumIon Battery for Plug-in Hybrid Electric Vehicle Applications[J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 60-66.
[14] WANG Ya-Dan; WANG Jian; MU Qi-Yong; LI Yong-Wei; QI Lu. Electrochemical Performances of LiMn2O4-based Electrode with Water-soluble Binder[J]. Acta Phys. -Chim. Sin., 2007, 23(Supp): 14-17.
[15] CHEN Yong-Chong; XU Xing-Jun; CUI Hong-Zhi; DAI Ke-Hua; SONG Zhao-Shuang; JIANG Wei-Jun; QI Lu. Preferred Orientation of Crystals and the Intensity Ratios of XRD Peaks of Cathode Material LiCoO2[J]. Acta Phys. -Chim. Sin., 2007, 23(12): 1948-1953.