Please wait a minute...
Acta Phys. -Chim. Sin.  2003, Vol. 19 Issue (04): 329-333    DOI: 10.3866/PKU.WHXB20030410
Article     
Photocatalytic Production of Hydrogen with Degrading Pollutants and Characterization by in situ Infrared Spectroscopy
Li Yue-Xiang;Lu Gong-Xuan;Li Shu-Ben;Dong Lu-Hu
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000;Department of Chemistry, Nanchang University, Nanchang 330047
Download:   PDF(1840KB) Export: BibTeX | EndNote (RIS)      

Abstract  The photocatalytic generation of hydrogen from water using single and binary component pollutants as electron donors in aqueous Pt/TiO2 suspension has been investigated. The adsorption of these donors on TiO2 was also monitored by in situ attenuated total reflection infrared spectroscopy (ATR-IR). In the single component system (formaldehyde, formic acid and oxalic acid), the efficiencies of electron donors follow the order:H2C2O4 >HCOOH >HCHO. The order is consistent with the adsorption strength of the electron donors on TiO2 determined by ATR-IR, which suggests that the hydrogen evolution efficiency is dependent on the strength of surface interaction. In the binary mixture systems consisting of oxalic acid and formic acid, the overall kinetics of hydrogen evolution and decomposition of pollutants are dependent on their adsorption strengths on TiO2 and their concentration levels as well. The result can be explained by their competitive adsorption on TiO2. ATR-IR characterization confirmed illustratively the above explanation.

Key wordsPhotocatalysis      Production of hydrogen      Organic pollutants      Adsorption       In situ IR     
Received: 08 July 2002      Published: 15 April 2003
Corresponding Authors: Lu Gong-Xuan     E-mail: gxlu@ns.lzb.ac.cn
Cite this article:

Li Yue-Xiang;Lu Gong-Xuan;Li Shu-Ben;Dong Lu-Hu. Photocatalytic Production of Hydrogen with Degrading Pollutants and Characterization by in situ Infrared Spectroscopy. Acta Phys. -Chim. Sin., 2003, 19(04): 329-333.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20030410     OR     http://www.whxb.pku.edu.cn/Y2003/V19/I04/329

[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[3] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[4] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.
[5] Qiang LIU,Yong HAN,Yunjun CAO,Xiaobao LI,Wugen HUANG,Yi YU,Fan YANG,Xinhe BAO,Yimin LI,Zhi LIU. In-situ APXPS and STM Study of the Activation of H2 on ZnO(10${\rm{\bar 1}}$0) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1366-1372.
[6] Chen-Hui ZHANG,Xin ZHAO,Jin-Mei LEI,Yue MA,Feng-Pei DU. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1846-1854.
[7] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1898-1904.
[8] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[9] . Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1236-1241.
[10] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 960-967.
[11] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 709-728.
[12] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[13] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[14] Fang CHENG,Han-Qi WANG,Kuang XU,Wei HE. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[15] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2013-2021.