Please wait a minute...
Acta Physico-Chimica Sinica  2005, Vol. 21 Issue (03): 338-342    DOI: 10.3866/PKU.WHXB20050323
Note     
Electrochemical Properties of a V2O5/C Composite in Aqueous Solution Used for Zinc Secondary Battery
TAO Bin-Wu;LIU Jian-Hua;LI Song-Mei;ZHAO Liang
School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083
Download:   PDF(1769KB) Export: BibTeX | EndNote (RIS)      

Abstract  A composite of vanadium pentoxide/carbon was prepared by sol-gel method. By using scanning electronic microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR), it was found that the composite was composed of porous particles. Inner part of the composite was carbon particles, which covered by an outer layer of vanadium pentoxide sol. The electrochemical properties of the composite as cathode material in aqueous solution for zinc secondary battery were studied by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). When the mass ratio of V2O5/C was 1:1,the composite electrode showed good electrochemical properties: open circuit potential of its battery reached 1.64 V; zinc ions were reversibly intercalated into the composite electrode in site A at 1.26 V and site B at 1.01 V, with a highest intercalation rate 70 mA•g-1; cycling performance of the composite electrode was quite good in a test of 20 charge-discharge cycles. The reaction process of V2O5/C composite electrode was controlled by the diffusion rate of zinc ions in V2O5.

Key wordsZinc secondary battery      Cathode material      Vanadium pentoxide       Intercalation      Electrochemical properties     
Received: 24 September 2004      Published: 15 March 2005
Corresponding Authors: LIU Jian-Hua     E-mail: liujh@buaa.edu.cn
Cite this article:

TAO Bin-Wu;LIU Jian-Hua;LI Song-Mei;ZHAO Liang. Electrochemical Properties of a V2O5/C Composite in Aqueous Solution Used for Zinc Secondary Battery. Acta Physico-Chimica Sinica, 2005, 21(03): 338-342.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20050323     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2005/V21/I03/338

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[2] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[3] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 211-241.
[4] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2287-2292.
[5] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2133-2145.
[6] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1999-2006.
[7] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1866-1879.
[8] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1489-1494.
[9] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinica, 2016, 32(5): 1056-1061.
[10] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 717-722.
[11] SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1513-1520.
[12] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1527-1534.
[13] ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 905-912.
[14] HUANG Zhi-Peng, GUO Lin-Yu, GUO Chao, ZHAO Meng-Meng, WANG Xue-Hua, JIN Zhao, LUO Jin-Hua, WANG Xin, FENG Ji-Jun. Synthesis of Fluorinated Polyanionic Lithium Ion Insertion/Extraction Material LiVPO4F/C by Carbon Thermal Reduction Assisted Sol-Gel Method[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 700-706.
[15] REN Xiang-Zhong, LIU Tao, SUN Ling-Na, ZHANG Pei-Xin. Preparation and Electrochemical Performances of Li1.2Mn0.54-xNi0.13Co0.13ZrxO2 Cathode Materials for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1641-1649.