Please wait a minute...
Acta Phys. -Chim. Sin.  2005, Vol. 21 Issue (05): 565-568    DOI: 10.3866/PKU.WHXB20050521
Microstructure and Electrochemical Properties of Amorphous Mg-Fe-Ni Hydrogen Storage Electrode Material
XIAO Xue-Zhang; CHEN Chang-Pin; WANG Xin-Hua; CHEN Li-Xin; WANG Li; GAO Lin-Hui
College of Materials Science and Chemical Engineering, Zhejiang University, Hangzhou    310027
Download:   PDF(1656KB) Export: BibTeX | EndNote (RIS)      

Abstract  The amorphous Mg-Fe-Ni composites have been synthesized by mechanical ball-milling. The microstructure and electrochemical properties of the composites were characterized by XRD, SEM and electrochemical testing. The electrochemical properties of the composites vary greatly with the amount of Mg content and Ni introduced. For the (xMg+Fe)+200% (mass fraction) Ni (x=2, 3) composites, it is found that the maximal discharge capacity increases with increasing Mg content in the composites. The maximal discharge capacities of the composites with x=2, 3 were 391.9 mA•h•g-1 and 480.8 mA•h•g-1, respectively. The result also indicates that, for the ball-milled (3Mg+Fe)+y% Ni (y=50, 100, 200) composites, with increasing Ni content in the composites, the discharge capacity increases first and then decreases, and reaches a maximum value of 519.5 mA•h•g-1 as y=100. In contrast, the discharge capacity of nickel-free (3Mg+Fe) composite is just 23.8 mA•h•g-1. The microstructure analysis shows that the composites are mix structure composed two single phases with Mg and Fe for the nickel-free composite even after being milled for 120 h, but no new phase is formed. The composites milled with the addition of nickel powder could easily form Mg-Fe amorphous structure. Besides, the nickel powder in the composites plays a role of electro-catalysis, hereby the electrochemical properties of the Mg-Fe-Ni composites are effectively improved.

Key wordsHydrogen storage electrode material      Mechanical alloying      Amorphous      Electrochemical properties      Microstructure     
Received: 08 October 2004      Published: 15 May 2005
Corresponding Authors: CHEN Chang-Pin     E-mail:
Cite this article:

XIAO Xue-Zhang; CHEN Chang-Pin; WANG Xin-Hua; CHEN Li-Xin; WANG Li; GAO Lin-Hui. Microstructure and Electrochemical Properties of Amorphous Mg-Fe-Ni Hydrogen Storage Electrode Material. Acta Phys. -Chim. Sin., 2005, 21(05): 565-568.

URL:     OR

[1] Qing-Kang LIU,Wen-Ping SONG,Qi-Tao HUANG,Guang-Yu ZHANG,Zhen-Xiu HOU. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2472-2479.
[2] Wei TANG,Jing WANG. Enhanced Gas Sensing Mechanisms of Metal Oxide Heterojunction Gas Sensors[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1087-1104.
[3] Lin LIU,Zhi-Sheng LI,Hui-Dong HU,Wei-Li SONG. Insight into Macroscopic Metal-Assisted Chemical Etching for Silicon Nanowires[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 1019-1028.
[4] LI Hao, DENG Yong-Hong, ZHANG Xiao-Hong, QIU Xue-Qing. Influence of Temperature on Microstructure and Physicochemical Properties of Alkali Lignin in Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1118-1128.
[5] ZHANG Jie-Jing, WANG Yu-Xin, XU Li. Simulation of Sphere-Microstructure Model of the Catalyst Layer in a PEMFC[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 489-497.
[6] ZHAO Feng-Wei, SHEN Mei-Yu, WANG Lin, DU Chang-Hai. Preparation of Amorphous Co-B/γ-Al2O3 Catalyst and Its Performance in Catalytic Liquid Phase Hydrogenation of Ethyl Lactate[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 527-532.
[7] Jie-Jing. ZHANG,Yu-Xin. WANG,Jian-Feng. ZHANG,Li. XU. Simulation of Orientated Catalyst Layer in PEMFC Using a Microstructure Lattice Model[J]. Acta Phys. -Chim. Sin., 2015, 31(12): 2316-2323.
[8] LI Hao, DENG Yong-Hong, QIU Xue-Qing. Influence of Acetylation on the Microstructure of Alkali Lignin in Tetrahydrofuran[J]. Acta Phys. -Chim. Sin., 2015, 31(1): 128-136.
[9] WU Wei, JIANG Fang-Ming, ZENG Jian-Bang. Reconstruction of LiCoO2 Cathode Microstructure and Prediction of Effective Transport Coefficients[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2361-2370.
[10] ZENG Yong-Ping, SHI Rong, YANG Zheng-Hua. Ab Initio Molecular Dynamics Simulations of Structural Properties of Be2+ in Water, Methanol and Ethanol[J]. Acta Phys. -Chim. Sin., 2013, 29(10): 2180-2186.
[11] CAO Yin-Liang, LI Zhi-Lin, WANG Feng, LIU Jing-Jun, JI Jing, WANG Jian-Jun, ZHANG Liang-Hu, QIN Shi-Yong. Electrochemical Preparation of Ni-Sn Active Cathode and Its Electrocatalytic Hydrogen Evolution Reaction Mechanisms in Alkaline Solution[J]. Acta Phys. -Chim. Sin., 2013, 29(07): 1479-1486.
[12] LIU Nian-Ping, SHEN Jun, GUAN Da-Yong, LIU Dong, ZHOU Xiao-Wei, LI Ya-Jie. Effect of Carbon Aerogel Activation on Electrode Lithium Insertion Performance[J]. Acta Phys. -Chim. Sin., 2013, 29(05): 966-972.
[13] LIU Yong-Li, LIU Huan, LI Wei, ZHAO Qian, QI Yang. Effect of Substrate Temperature on the Growth and Microstructure of ZnO Film[J]. Acta Phys. -Chim. Sin., 2013, 29(03): 631-638.
[14] WANG Ding, TIAN Guo-Cai. Simulation Study of the Effect ofMethanol on the Structure and Properties of 1-Butyl-3-methylimidazolium Tetrafluoroborate Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2558-2566.
[15] RAN Ke, CHEN Qing, ZUO Jian-Min. Fabrication and Structure Characterization of Quasi-2-Dimensional Amorphous Carbon Structures[J]. Acta Phys. -Chim. Sin., 2012, 28(07): 1551-1555.