Please wait a minute...
Acta Physico-Chimica Sinica  2009, Vol. 25 Issue (04): 611-616    DOI: 10.3866/PKU.WHXB20090403
Article     
Fabrication and Performance of Cu6Sn5 Alloy Anode Using Porous Cu as Current Collector
FAN Xiao-Yong, ZHUANG Quan-Chao, WEI Guo-Zhen, KE Fu-Sheng, HUANG Ling, DONG Quan-Feng, SUN Shi-Gang
School of Materials Science and Engineering, Chang'an University, Xi'an 710061, P. R. China; 2State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(1046KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Porous Cu was fabricated by electrodeposition through a kinetic template of hydrogen bubbles. The product was subsequently annealed to increase its structural stability. The Cu-Sn alloy was then electrodeposited onto porous Cu which served as a current collector. X-ray diffraction (XRD) studies ascertained that the composition of the Cu-Sn alloy was Cu6Sn5 and scanning electron microscopy (SEM) investigations showed a three-dimensional (3D) porous structure of the electrode. The first charge/discharge capacities of the Cu6Sn5 alloy electrode were measured respectively at 735 and 571 mAh·g-1, and a good retention of the capacities has been determined. Interfacial properties of the Cu6Sn5 alloy electrode in a commercial electrolyte were also studied by electrochemical impedance spectroscopy (EIS).



Key wordsPorous Cu current collector      Cu6Sn5 alloy      Lithiumion battery      Anode      Electrochemicalimpedance spectroscopy     
Received: 31 October 2008      Published: 11 February 2009
MSC2000:  O646  
Corresponding Authors: FAN Xiao-Yong, SUN Shi-Gang     E-mail: fandajiao@yahoo.com.cn;sgsun@xmu.edu.cn
Cite this article:

FAN Xiao-Yong, ZHUANG Quan-Chao, WEI Guo-Zhen, KE Fu-Sheng, HUANG Ling, DONG Quan-Feng, SUN Shi-Gang. Fabrication and Performance of Cu6Sn5 Alloy Anode Using Porous Cu as Current Collector. Acta Physico-Chimica Sinica, 2009, 25(04): 611-616.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20090403     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2009/V25/I04/611

[1] ZHANG Xiyue, HUANG Yalan, WU Shuwei, ZENG Yinxiang, YU Minghao, CHENG Faliang, LU Xihong, TONG Yexiang. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 219-226.
[2] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1822-1827.
[3] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[4] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1628-1634.
[5] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[6] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 845-852.
[7] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 486-499.
[8] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[9] LIU Shuai, YAO Lu, ZHANG Qin, LI Lu-Lu, HU Nan-Tao, WEI Liang-Ming, WEI Hao. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2339-2358.
[10] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.
[11] PENG Bo, XU Yao-Lin, MULDER Fokko M. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2127-2132.
[12] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 80-102.
[13] TANG Yan-Ping, YUAN Sha, GUO Yu-Zhong, HUANG Rui-An, WANG Jian-Hua, YANG Bin, DAI Yong-Nian. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2280-2286.
[14] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1866-1879.
[15] HUANG Jia-Jun, DONG Zhi-Jun, ZHANG Xu, YUAN Guan-Ming, CONG Ye, CUI Zheng-Wei, LI Xuan-Ke. Effects of Structure on Electrochemical Performances of Ribbon-Shaped Mesophase Pitch-Based Graphite Fibers[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1699-1707.