Please wait a minute...
Acta Physico-Chimica Sinica  2009, Vol. 25 Issue (05): 905-910    DOI: 10.3866/PKU.WHXB20090503
Article     
Electrochemical Behaviors of New Lithium Salt LiBC2O4F2 in EC+DMC Solvents
GAO Hong-Quan, LAI Yan-Qing, ZHANG Zhi-An, LIU Ye-Xiang
School of Metallurgical Science and Engineering, Central South University, Changsha 410083, P. R. China
Download:   PDF(175KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The thermal stability of lithium difluoro(axalato)borate (LiODFB) was analyzed by thermal gravimetric-differential thermal analysis (TG-DTA). The electrochemical performance and interfacial characteristics of the LiODFB/ethylene carbonate (EC)+dimethyl carbonate (DMC) electrolyte were studied by constant current charge-discharge and electrochemical impedance spectroscopy (EIS). Results show that LiODFB has higher thermal stability and that the lithium-ion cells using LiODFB salt in EC+DMC solvents exhibit excellent electrochemical performances. Compared with the LiPF6/EC+DMC electrolyte, the lithium-ion cells using LiODFB-based electrolyte have very good capacity retention at 55 ℃. At 0.5C and 1C (1C=250 mA·g-1) discharge rates, the difference between the rate capability of the two cells is tiny. LiODFB is reduced at about 1.5 V (vs Li/Li+) and forms a robust protective solid electrolyte interphase (SEI) film on the graphite surface. EIS tests show that these lithium-ion batteries which use the LiODFB-based electrolyte have a slightly higher interfacial impedance. Therefore, as a new salt, LiODFB is a promising alternative lithium salt for the replacement of LiPF6 in lithiumion battery electrolytes.



Key wordsLithium-ion battery      Electrolyte      Lithiumdifluoro(axalato)borate      Electrochemical
performance
      Interfacial property     
Received: 20 November 2008      Published: 03 March 2009
MSC2000:  O646  
Corresponding Authors: ZHANG Zhi-An     E-mail: zhianzhang@sina.com
Cite this article:

GAO Hong-Quan, LAI Yan-Qing, ZHANG Zhi-An, LIU Ye-Xiang. Electrochemical Behaviors of New Lithium Salt LiBC2O4F2 in EC+DMC Solvents. Acta Physico-Chimica Sinica, 2009, 25(05): 905-910.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20090503     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2009/V25/I05/905

[1] MA Qiang, HU Yongsheng, LI Hong, CHEN Liquan, HUANG Xuejie, ZHOU Zhibin. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 213-218.
[2] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[3] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[4] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[5] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[7] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[8] KONG Wei-Wei, GUO Shuang, ZHANG Yong-Min, LIU Xue-Feng. Redox-Responsive Interfacial Properties of Se-Containing Sulfobetaine Surfactant[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1205-1213.
[9] ZHANG Yan-Tao, LIU Zhen-Jie, WANG Jia-Wei, WANG Liang, PENG Zhang-Quan. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 486-499.
[10] ZHENG Yan-Gong, ZHU Li-Na, LI Han-Yu, JIAN Jia-Wen, DU Hai-Ying. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 573-581.
[11] XIE Yong-Min, WANG Xiao-Qiang, LIU Jiang, YU Chang-Lin. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 386-392.
[12] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[13] WU Zhong, ZHANG Xin-Bo. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 305-313.
[14] JIA Zhao-Yang, LIU Mei-Nan, ZHAO Xin-Luo, WANG Xian-Shu, PAN Zheng-Hui, ZHANG Yue-Gang. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2510-2516.
[15] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.