Please wait a minute...
Acta Physico-Chimica Sinica  2009, Vol. 25 Issue (05): 876-882    DOI: 10.3866/PKU.WHXB20090507
Article     
Mechanism of Palladium-Catalyzed Methanol Decomposition for Hydrogen Production
NI Zhe-Ming, MAO Jiang-Hong, PAN Guo-Xiang, XU Qian, LI Xiao-Nian
College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310032, P. R. China
Download:   PDF(2552KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The reaction pathway of methanol decomposition (CH3OH(s)→CH3O(s)+H(s)→CH2O(s)+2H(s)→CHO(s)+3H(s)→CO(s)+4H(s)) on Pd(111) surfaces was studied using density functional theory (DFT). Geometries of reactants, intermediates, transition states and products were calculated. Adsorption energies of possible species and activation energy barriers of possible elementary reactions involved in the mechanism were obtained in this work. In addition, we studied the reaction mechanism for C—O bond scission in methanol decomposition, which led to the formation of CH3(s) and OH(s). Results show that O—H bond scission (with an activation energy barrier of 103.1 kJ·mol-1) requires less energy than C—O bond scission (with an activation energy barrier of 249.3 kJ·mol-1). The major reaction pathway on Pd(111) surfaces involves O—H bond scission in CH3OH and then a further decomposition of the resultant methoxy intermediate to CO(s) and H(s) via sequential hydrogen abstraction from CH3O(s). O—H bond scission in methanol and hydrogen abstraction from the methoxy group are possible rate-determining steps for this decomposition with activation energy barriers of 103.1 and 106.7 kJ·mol-1, respectively.



Key wordsMethanol decomposition      Reaction mechanism      Density functional theory      Transition state     
Received: 05 December 2008      Published: 04 March 2009
MSC2000:  O641  
Corresponding Authors: NI Zhe-Ming     E-mail: jchx@zjut.edu.cn
Cite this article:

NI Zhe-Ming, MAO Jiang-Hong, PAN Guo-Xiang, XU Qian, LI Xiao-Nian. Mechanism of Palladium-Catalyzed Methanol Decomposition for Hydrogen Production. Acta Physico-Chimica Sinica, 2009, 25(05): 876-882.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20090507     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2009/V25/I05/876

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 256-262.
[3] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 263-269.
[4] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 303-313.
[5] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1875-1883.
[6] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1803-1810.
[7] QIU Jian-Ping, TONG Yi-Wen, ZHAO De-Ming, HE Zhi-Qiao, CHEN Jian-Meng, SONG Shuang. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1411-1420.
[8] WANG Zi-Min, ZHENG Mo, XIE Yong-Bing, LI Xiao-Xia, ZENG Ming, CAO Hong-Bin, GUO Li. Molecular Dynamics Simulation of Ozonation of p-Nitrophenol at Room Temperature with ReaxFF Force Field[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1399-1410.
[9] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1310-1323.
[10] ZHANG Ying-Jie, ZHU Zi-Yi, DONG Peng, QIU Zhen-Ping, LIANG Hui-Xin, LI Xue. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1085-1107.
[11] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1171-1180.
[12] HAN Lei, PENG Li, CAI Ling-Yun, ZHENG Xu-Ming, ZHANG Fu-Shan. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol ——Raman Spectra and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 1043-1050.
[13] CHEN Ai-Xi, WANG Hong, DUAN Sai, ZHANG Hai-Ming, XU Xin, CHI Li-Feng. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au(111) Surfaces[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 1010-1016.
[14] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 769-779.
[15] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 530-538.