Please wait a minute...
Acta Physico-Chimica Sinica  2009, Vol. 25 Issue (07): 1352-1356    DOI: 10.3866/PKU.WHXB20090715
Article     
Formate Adsorption on Cu(110), Ag(110) and Au(110) Surfaces
PANG Xian-Yong, XING Bin, WANG Gui-Chang, YOSHITADA Morikawa, JUNJI Nakamura
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China|Center of Theoretical Computational Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China|Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Japan|Institute of Materials Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan
Download:   PDF(484KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The adsorption of formate (HCOO) on Cu(110), Ag(110), and Au(110) surfaces has been studied by the density functional theory (DFT) and generalized gradient approximation (GGA) with slab model. To find the most stable adsorption site of HCOOon M(110) (M=Cu, Ag, Au), we investigated several adsorption forms like bidentate and monodentate adsorption sites. The calculated results show that the most stable adsorption site is short-bridge bidentate form for all the three metals, which is independence of the metallic lattice constants. The calculated atomic geometries agree well with the experimental results and the previous calculation results. Adsorption energy of formate follows the order of Cu(110) (-116 kJ·mol-1)>Ag(110)(-57 kJ·mol-1)>Au(110)(-27 kJ·mol-1), in agreement with decomposition temperature of formate measured by experiments. The order of the adsorption energy can be explained by Pauli repulsion between molecular orbitals of formate with d-band of metal, i.e., the more occupied population of formate, the larger Pauli repulsion, which results in the weaker adsorption of formate. In addition, the activation energy of formate synthesis from CO2 and H2 was predicated using the adsorption energy of formate and the decomposition temperature of formate, which follows the order of Au(110)>Ag(110)>Cu(110).



Key wordsChemisorption      Formate      Cu(110)      Ag(110)      Au(110)      DFT-GGA-slab     
Received: 19 February 2009      Published: 24 April 2009
MSC2000:  O641  
  O647  
Corresponding Authors: WANG Gui-Chang     E-mail: wangguichang@nankai.edu.cn
Cite this article:

PANG Xian-Yong, XING Bin, WANG Gui-Chang, YOSHITADA Morikawa, JUNJI Nakamura. Formate Adsorption on Cu(110), Ag(110) and Au(110) Surfaces. Acta Physico-Chimica Sinica, 2009, 25(07): 1352-1356.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20090715     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2009/V25/I07/1352

[1] MA Hao, LONG Jin-Xing, WANG Fu-Rong, WANG Le-Fu, LI Xue-Hui. Conversion of Cellulose to Butyl Levulinate in Bio-Butanol Medium Catalyzed by Acidic Ionic Liquids[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 973-979.
[2] LI Na, CHEN Qiu-Yan, LUO Meng-Fei, LU Ji-Qing. Kinetics Study of CO Oxidation Reaction over Pt/TiO2 Catalysts[J]. Acta Physico-Chimica Sinica, 2013, 29(05): 1055-1062.
[3] LI Jin-Bing, JIANG Zhi-Quan, HUANG Wei-Xin . Adsorption and Decomposition of NO2 on Ag/Pt(110) Bimetallic Surface[J]. Acta Physico-Chimica Sinica, 2013, 29(04): 837-842.
[4] REN Yun-Peng; LU Yu-Xiang; LOU Qi. Theoretical Study on the Behavior of CO Chemisorption on Low-index Platinum Surfaces[J]. Acta Physico-Chimica Sinica, 2007, 23(11): 1728-1732.
[5] CHEN Xin; CHEN Wen-Bin; SHANG Xue-Fu; TAO Xiang-Ming; DAI Jian-Hui; TAN Ming-Qiu. Hydrogen Chemisorption on the Ru(0001) Surface[J]. Acta Physico-Chimica Sinica, 2007, 23(06): 861-866.
[6] CAI Jian-Qiu;TAO Xiang-Ming;TAN Ming-Qiu. Atomic Geometry and Adsorption of Cu(100)/H Surface[J]. Acta Physico-Chimica Sinica, 2007, 23(03): 355-360.
[7] CHEN Wen-bin; TAO Xiang-ming; ZHAO Xin-xin; CAI Jian-qiu; TAN Ming-qiu. The Atomic Structure and Electronic States of Oxygen- adsorbed on Cu(110)c(2×1) Surface[J]. Acta Physico-Chimica Sinica, 2005, 21(10): 1086-1090.
[8] Xu Xin;Lü Xin;Wang Nan-Qin;Zhang Qian-Er. Cluster Modeling of Chemisorption and Reactions on Metal Oxide Surfaces[J]. Acta Physico-Chimica Sinica, 2004, 20(08S): 1045-1054.
[9] Cai Yong, Zhu Xi-Wen, Yan Min, Chen Yong-Tai, Gao Ke-Lin. Chemical Reactions of Transition-metals with CO[J]. Acta Physico-Chimica Sinica, 1999, 15(02): 162-166.
[10] Wang Gui-Chang, Sun Yu-Han, Zhong Bing. Simulation to the Structure Sensitive of Cu Based catalyst for Methanol Synthesis[J]. Acta Physico-Chimica Sinica, 1998, 14(04): 337-342.
[11] Wang Gui-Chang, Sun Yu-Han, Zhong Bing. Calculation of Solid Metal Atom's Electronegativity and its Application(II)[J]. Acta Physico-Chimica Sinica, 1998, 14(03): 204-209.
[12] Zhang Ying, Xu Hai-Bo. CO Chemisorption on Disordered Binary Alloy[J]. Acta Physico-Chimica Sinica, 1998, 14(01): 68-72.
[13] Lv Xin,Xu Xin,Wang Nan-Qin,Liao Meng-Sheng,Zhang Qian-Er. Cluster Modelling of CO Chemisorption on Cu/ZnO[J]. Acta Physico-Chimica Sinica, 1997, 13(11): 1005-1009.
[14] Cao Rong,Hou Zhen-Shan,Zhao Hong,He Di-Jing,Chen Wen-Hai. Propane Aromatization over Pt-Ga/HZSM-5 Catalyst[J]. Acta Physico-Chimica Sinica, 1996, 12(02): 114-118.
[15] Lv Xin,Xu Xin,Wang Nan-Qin,Zhang Qian-Er. DV-Xa Embedded Cluster Studies:Chemisorption of NO on NiO(100) Surface[J]. Acta Physico-Chimica Sinica, 1995, 11(09): 796-800.