Please wait a minute...
Acta Physico-Chimica Sinica  2009, Vol. 25 Issue (09): 1829-1834    DOI: 10.3866/PKU.WHXB20090905
Preparation and Photocatalytic Hydrogen Evolution Performance of C-N Co-doped Nano TiO2 Photocatalysts
ZHANG Xiao-Yan, CUI Xiao-Li
Department of Materials Science, Fudan University, Shanghai 200433, P. R. China
Download:   PDF(539KB) Export: BibTeX | EndNote (RIS)      


Carbon-nitrogen co-doped titanium dioxide (TiO2) nanoparticles were synthesized by calcining titanium carbonitride (TiCN) powder in air at different temperatures. The as-prepared powders were characterized by X-ray diffraction (XRD), transmission electron microscopy(TEM), ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS), and X-ray photoelectron spectroscopy (XPS). XRDand XPS results showed that nitrogen and carbon in the TiCN lattice could be replaced by oxygen through calcining the TiCN powder in air. Stronger light absorption in both the UV and visible light region was observed for the as-prepared powders compared to commercial P25 from the DRS results. The photocatalytic hydrogen evolution performance over both the as-prepared catalysts and P25 was tested using Na2S-Na2SO3 as a sacrificial electron donor under UV and UV-Vis light irradiation. The highest photocatalytic activity was observed for CN-TiO2 obtained fromTiCNand calcined at 550 ℃. The hydrogen evolution rate reached 41.1 μmol·h-1, which is higher than that from P25 (26.2 μmol·h-1). This may be caused by a synergistic effect between doped C and N elements. Under UV-Vis light illumination, the highest hydrogen evolution rate was 0.2 μmol·h-1, which may be due to a minor contribution of visible light absorption to water photo-splitting for hydrogen production.

Key wordsPhotocatalysis      C-N co-doped titaniumdioxide      Titaniumcarbonitride      Hydrogen evolution     
Received: 17 January 2009      Published: 08 July 2009
MSC2000:  O643  
Corresponding Authors: CUI Xiao-Li     E-mail:
Cite this article:

ZHANG Xiao-Yan, CUI Xiao-Li. Preparation and Photocatalytic Hydrogen Evolution Performance of C-N Co-doped Nano TiO2 Photocatalysts. Acta Physico-Chimica Sinica, 2009, 25(09): 1829-1834.

URL:     OR

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[2] LING Chong-Yi, WANG Jin-Lan. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 869-885.
[3] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 590-601.
[4] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 399-406.
[5] CAO Pengfei, HU Yang, ZHANG Youwei, PENG Jing, ZHAI Maolin. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2542-2549.
[6] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2072-2081.
[7] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2082-2091.
[8] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2022-2028.
[9] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 149-164.
[10] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 80-102.
[11] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2185-2196.
[12] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2069-2076.
[13] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2077-2083.
[14] CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1556-1592.
[15] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1758-1764.