Please wait a minute...
Acta Phys. -Chim. Sin.  2009, Vol. 25 Issue (09): 1823-1828    DOI: 10.3866/PKU.WHXB20090915
Article     
Modeling the Supercritical Adsorption of Hydrogen on A-and X-Type Zeolites with a Lattice Density Function
DU Xiao-Ming, WU Er-Dong
Shenyang National Laboratory for Materials Sciences, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, P. R. China
Download:   PDF(196KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Adsorption isotherms of hydrogen on the microporous zeolites A and X under supercritical conditions were modeled using lattice density function theory (LDFT) based on the three-dimensional Ono-Kondo equation. According to the sizes and shapes of the zeolite pores, the local arrangement of adsorption sites within the pores in the LDFT models were simulated by the clusters of simple cubic lattice, face-centered cubic lattice, and body-centered cubic lattice structures. Results indicate that the LDFT models appear to be effective in describing the multilayer or monolayer adsorption of hydrogen on zeolites A and X under supercritical conditions and the calculated adsorption isotherms agree well with the experimental isotherms measured previously. In particular, the hydrogen-zeolite interaction energy parameters used in LDFT models were verified by the Lennard-Jones (12-6) potential model for cylindrical pores based on a thermodynamics method. These results confirm the reliability of LDFT models in describing hydrogen adsorption on zeolite adsorbents. Using the obtained parameters, adsorption isotherms for hydrogen on zeolite X were predicted using the LDFT model over a wider range of temperatures and pressures.



Key wordsSupercritical adsorption      Lattice density function theory      Hydrogen      Zeolite     
Received: 02 March 2009      Published: 16 July 2009
MSC2000:  O647  
  O641  
Corresponding Authors: WU Er-Dong     E-mail: ewu@imr.ac.cn
Cite this article:

DU Xiao-Ming, WU Er-Dong. Modeling the Supercritical Adsorption of Hydrogen on A-and X-Type Zeolites with a Lattice Density Function. Acta Phys. -Chim. Sin., 2009, 25(09): 1823-1828.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20090915     OR     http://www.whxb.pku.edu.cn/Y2009/V25/I09/1823

[1] Jordan LEE,Yong LI,Jianing TANG,Xiaoli CUI. Synthesis of Hydrogen Substituted Graphyne through Mechanochemistry and Its Electrocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1080-1087.
[2] Yunnan GAO,Shizhen LIU,Zhenqing ZHAO,Hengcong TAO,Zhenyu SUN. Heterogeneous Catalysis of CO2 Hydrogenation to C2+ Products[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 858-872.
[3] Yucui HOU,Congfei YAO,Weize WU. Deep Eutectic Solvents: Green Solvents for Separation Applications[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 873-885.
[4] Wenjun CHEN,Zhimin XUE,Jinfang WANG,Jingyun JIANG,Xinhui ZHAO,Tiancheng MU. Investigation on the Thermal Stability of Deep Eutectic Solvents[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 904-911.
[5] Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 886-895.
[6] Teng XUE,Lilu DONG,Ying ZHANG,Haihong WU. Green and Cost-Effective Preparation of Small-Sized ZSM-5[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 920-926.
[7] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[8] Xiaoyu JIANG,Wei WU,Yirong MO. Strength of Intramolecular Hydrogen Bonds[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 278-285.
[9] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 168-176.
[10] Tian LIU,Jun LI,Weijia LIU,Yudan ZHU,Xiaohua LU. Simple Ligand Modifications to Modulate the Activity of Ruthenium Catalysts for CO2 Hydrogenation: Trans Influence of Boryl Ligands and Nature of Ru―H Bond[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1097-1105.
[11] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1865-1874.
[12] Xin-Lei WANG,Kui MA,Li-Hong GUO,Tong DING,Qing-Peng CHENG,Ye TIAN,Xin-Gang LI. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1699-1708.
[13] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[14] Chun-Lei WEI,Jie GAO,Kai WANG,Mei DONG,Wei-Bin FAN,Zhang-Feng QIN,Jian-Guo WANG. Effect of Hydrogen pre-treatment on the catalytic properties of Zn/HZSM-5 zeolite for ethylene aromatization reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1483-1491.
[15] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1492-1498.