Please wait a minute...
Acta Physico-Chimica Sinica  2009, Vol. 25 Issue (09): 1883-1889    DOI: 10.3866/PKU.WHXB20090917
Article     
Ethane Adsorption and Decomposition on Ni(111) Surface
ZHANG Fu-Lan, LI Lai-Cai, TIAN An-Min
College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066, P. R. China|Department of Chemistry, Yangtze Normal University, Fuling 408003, Chongqing, P. R. China|College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
Download:   PDF(3149KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A possible decomposition mechanismfor ethane on Ni(111) surface was investigated using first-principles density functional theory (DFT) and a self-consistent periodic calculation. The transition states were determined using complete linear synchronous transit and quadratic synchronous transit (LST/QST) methods. All the species involved in this process had four possible adsorption sites (top, fcc, hcp, and bridge) on the Ni(111) surface and all these were fully optimized to obtain their equilibrium geometries and electronic structures. The corresponding adsorption energies and Mulliken charge analyses of these species were predicted and compared. Favorable adsorption sites on the Ni(111) surface for these species were found. In the C—C bond activation pathway, the energy barrier of the rate-limiting step was 257.9 kJ·mol-1. However, the energy barrier of the rate-limiting step was only 159.8 kJ·mol-1 for the C—H bond activation pathway, which suggested that the C—H bond activation pathway would be preferred. As a result, the main products are C2H4 and H2.



Key wordsEthane      Ni(111) surface      Adsorption      Density functional theory      Transition state     
Received: 28 April 2009      Published: 16 July 2009
MSC2000:  O641  
  O647  
Corresponding Authors: LI Lai-Cai     E-mail: lilcmail@163.com
Cite this article:

ZHANG Fu-Lan, LI Lai-Cai, TIAN An-Min. Ethane Adsorption and Decomposition on Ni(111) Surface. Acta Physico-Chimica Sinica, 2009, 25(09): 1883-1889.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20090917     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2009/V25/I09/1883

[1] YIN Yue-Qi, JIANG Meng-Xu, LIU Chun-Guang. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M=Ni, Pd, Pt, Cu, Ag, Au, POM=[PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 270-277.
[2] YIN Fan-Hua, TAN Kai. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 256-262.
[3] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 286-295.
[4] MORRISON Robert C. Fukui Functions for the Temporary Anion Resonance States of Be-,Mg-,and Ca-[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 263-269.
[5] ZHONG Aiguo, LI Rongrong, HONG Qin, ZHANG Jie, CHEN Dan. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 303-313.
[6] MA Qiang, HU Yongsheng, LI Hong, CHEN Liquan, HUANG Xuejie, ZHOU Zhibin. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 213-218.
[7] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1846-1854.
[8] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1875-1883.
[9] LIU Yu-Yu, LI Jie-Wei, BO Yi-Fan, YANG Lei, ZHANG Xiao-Fei, XIE Ling-Hai, YI Ming-Dong, HUANG Wei. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1803-1810.
[10] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1898-1904.
[11] ZHENG Fang-Fang, LI Qian, ZHANG Hong, WENG Wei-Zheng, YI Xiao-Dong, ZHENG Yan-Ping, HUANG Chuan-Jing, WAN Hui-Lin. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1689-1698.
[12] LIU Jing-Wei, YANG Na-Ting, ZHU Yan. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1453-1461.
[13] HAN Bo, CHENG Han-Song. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1310-1323.
[14] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1236-1241.
[15] GUO Zi-Han, HU Zhu-Bin, SUN Zhen-Rong, SUN Hai-Tao. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1171-1180.