Please wait a minute...
Acta Physico-Chimica Sinica  2009, Vol. 25 Issue (10): 2167-2172    DOI: 10.3866/PKU.WHXB20091014
Article     
Controlled Syntheses of FeNi3 Alloy Nanostructures via Reverse Microemulsion-Directed Hydrothermal Motheds
WANG Run-Han, JIANG Ji-Sen, HU Ming
Center of Functional Nanomaterials and Devices, Department of Physics, East China Normal University, Shanghai 200062, P. R. China
Download:   PDF(1530KB) Export: BibTeX | EndNote (RIS)      

Abstract  

FeNi3 alloy nanostructures were synthesized by hydrothermal methods in the surfactant/n-octane/n-hexanol/water quaternary reverse microemulsion systems. The size and shape of the products could be controlled by changing the type and dosage of the surfactant. Spherical particles with a diameter of ca 75 nmwere prepared when polyethylene glycol 4000 (PEG4000) was used as the surfactant. Sea-urchin-like particle was obtained when cetyltrimethylammonium bromide (CTAB) was used as the surfactant. The single sea-urchin-like particles were composed of many nanorods with diameters of ca 42 nm and lengths of 0.4-1.2 μm. The as-synthesized products were characterized by powder X-ray diffraction (XRD), Mossbauer spectroscopy, scanning electronic microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and multi-purpose magnetic variable field translation balance (MM VFTB). Both the spherical and sea-urchin-like FeNi3 samples exhibited typical ferromagnetic behavior at roomtemperature. Their saturation magnetization values (Ms) were 114.4 and 97.4 emu·g-1, respectively, while their coercivity values (Hc) were 94.0 and 329.0 Oe, respectively.



Key wordsNanoparticles      FeNi3 alloy      Reverse microemulsion      Hydrothermal method      Morphology control     
Received: 12 May 2009      Published: 26 August 2009
MSC2000:  O648  
Corresponding Authors: JIANG Ji-Sen     E-mail: jsjiang@phy.ecnu.edu.cn
Cite this article:

WANG Run-Han, JIANG Ji-Sen, HU Ming. Controlled Syntheses of FeNi3 Alloy Nanostructures via Reverse Microemulsion-Directed Hydrothermal Motheds. Acta Physico-Chimica Sinica, 2009, 25(10): 2167-2172.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20091014     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2009/V25/I10/2167

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 168-176.
[2] LEI Gang, HE Yan. Applications of Single Plasmonic Nanoparticles in Biochemical Analysis and Bioimaging[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 11-21.
[3] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1822-1827.
[4] ZHENG Xiao-Di, ZHU Yan-Li, DONG Rui, JIAO Qing-Jie. Effect of Alkyl Imidazole Ionic Liquids CnmimCl (n= 4, 6, 8) on CL-20 Recrystallization[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1950-1959.
[5] LIU Shan-Shan, XU Zheng, ZHAO Su-Ling, LIANG Zhi-Qin, ZHU Wei. Effects of F- Concentration on the Morphologies and Fluorescent Lifetimes of Ln3+-Doped Up-Conversion Nanocrystals[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2108-2112.
[6] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 551-557.
[7] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(12): 2841-2870.
[8] ZHAO Jia, LIU Li-Feng, ZHANG Ying. Synthesis of Silver Nanoparticles Loaded onto a Structural Support and Their Catalytic Activity[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1549-1558.
[9] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1421-1429.
[10] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Physico-Chimica Sinica, 2015, 31(6): 1105-1112.
[11] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 783-792.
[12] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 268-276.
[13] QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, 2015, 31(12): 2332-2340.
[14] YU Hua-Feng, ZHANG Guo-Pei, HAN Li-Na, CHANG Li-Ping, BAO Wei-Ren, WANG Jian-Cheng. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2165-2173.
[15] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, 2015, 31(1): 153-158.