Please wait a minute...
Acta Phys. -Chim. Sin.  2010, Vol. 26 Issue (02): 291-298    DOI: 10.3866/PKU.WHXB20100227
ELECTROCHEMISTRY     
Copolymerization and Capacitive Performance of Composite Carbon Nanotubes/Polyaniline/Nickel Hexacyanoferrate Films
ZANG Yang, HAO Xiao-Gang, WANG Zhong-De, ZHANG Zhong-Lin, LIU Shi-Bin
College of Chemistry &Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
Download:   PDF(622KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Electroactive composite films of carbon nanotubes/polyaniline/nickel hexacyanoferrate (CNTs/PANI/NiHCF) were synthesized on platinum substrates modified with CNTs by a one-step co-polymerization using cyclic voltammetry. The composite films were characterized by Fourier transforminfrared spectroscopy (FT-IR), energy dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Cyclic voltammetry (CV), galvanostatic charge/discharge, and electrochemical impedance spectroscope (EIS) methods were used to study the cycling stability and the electrochemical capacitive performance of the CNTs/PANI/NiHCF films. Results showed that three-dimensional porous network composite films with uniform distributions of PANI and NiHCF nanoparticles on the CNTs were formed by this new method. The specific capacitance of the inorganic-organic hybrid films were 262.28 F·g-1 with a specific energy of 29.51 Wh·kg-1 at a current density of 2 mA·cm-2. The specific power was 10228.61 W·kg-1 at a current density of 10 mA·cm-2. Meanwhile, CNTs/PANI/NiHCF films showed a capacity decay of only 19.92% after 2000 charge/discharge cycles and had a coulombic efficiency of over 99%. Therefore, the composite films exhibit outstanding power performance, fast dynamics of charge transport and are excellent materials for use in supercapacitors.



Key wordsSupercapacitor      Polyaniline      Nickel hexacyanoferrate      Carbon nanotube      Composite film      Electrochemical co-polymerization      Capacitive performance     
Received: 31 August 2009      Published: 31 December 2009
MSC2000:  O646  
Corresponding Authors: HAO Xiao-Gang     E-mail: xghao@tyut.edu.cn
Cite this article:

ZANG Yang, HAO Xiao-Gang, WANG Zhong-De, ZHANG Zhong-Lin, LIU Shi-Bin. Copolymerization and Capacitive Performance of Composite Carbon Nanotubes/Polyaniline/Nickel Hexacyanoferrate Films. Acta Phys. -Chim. Sin., 2010, 26(02): 291-298.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20100227     OR     http://www.whxb.pku.edu.cn/Y2010/V26/I02/291

[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Carlos CÁRDENAS,Macarena MUÑOZ,Julia CONTRERAS,Paul W. AYERS,Tatiana GÓMEZ,Patricio FUENTEALBA. Understanding Chemical Reactivity in Extended Systems: Exploring Models of Chemical Softness in Carbon Nanotubes[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 631-638.
[3] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[6] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1838-1845.
[7] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[8] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[9] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[10] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[11] Min FANG,Zong-Yuan WANG,Chang-Jun LIU. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 435-440.
[12] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[13] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[14] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[15] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.