Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (03): 669-674    DOI: 10.3866/PKU.WHXB20100316
CATALYSIS AND SURFACE STRUCTURE     
Shortened Carbon Nanotubes as Supports to Prepare High-Performance Pt/SCNT and PtRu/SCNT Catalysts for Fuel Cells
WU Yan-Ni, LIAO Shi-Jun
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China; School of Chemistry and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, Guangdong Province, P. R. China
Download:   PDF(1628KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Ball milling was used with ethanol as a milling aid agent to shorten the carbon nanotubes (SCNT) from 5-15 μmto ca 200 nm. We prepared a platinum catalyst Pt/SCNT and a platinum ruthenium alloy catalyst PtRu/SCNT using the shortened nanotubes as supports by a colloidal method. We found that Pt/SCNT showed much higher activity than Pt/CNT during the anodic oxidation of methanol. The peak current density for Pt/SCNT was 1.4 times as high as that of Pt/CNT and it was also much higher than that of the commercial Pt/C catalyst. Furthermore, we found that PtRu/SCNT showed higher activity than that of Pt/SCNT and PtRu/C catalysts. The results of X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), and the specific surface area (BET) method. revealed that the crystal structure of the nanotubes did not change before or after shortening whereas the special surface area and the electrochemical activity increased significantly.



Key wordsDirect methanol fuel cell      Electrocatalyst      Methanol oxidation      Shortened carbon nanotubes     
Received: 05 September 2009      Published: 22 January 2010
MSC2000:  O643  
Corresponding Authors: LIAO Shi-Jun     E-mail: chsjliao@scut.edu.cn
Cite this article:

WU Yan-Ni, LIAO Shi-Jun. Shortened Carbon Nanotubes as Supports to Prepare High-Performance Pt/SCNT and PtRu/SCNT Catalysts for Fuel Cells. Acta Physico-Chimica Sinica, 2010, 26(03): 669-674.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20100316     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2010/V26/I03/669

[1] QIAN Hui-Hui, HAN Xiao, ZHAO Yan, SU Yu-Qin. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1822-1827.
[2] YANG Yi, LUO Lai-Ming, CHEN Di, LIU Hong-Ming, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1628-1634.
[3] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 283-294.
[4] BAI Xiao-Fang, CHEN Wei, WANG Bai-Yin, FENG Guang-Hui, WEI Wei, JIAO Zheng, SUN Yu-Han. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2388-2403.
[5] XU Han, TONG Ye-Xiang, LI Gao-Ren. Controllable Synthesis of Pd Nanocrystals for Applications in Fuel Cells[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2171-2184.
[6] LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang. First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 950-960.
[7] LUO Liu-Xuan, SHEN Shui-Yun, ZHU Feng-Juan, ZHANG Jun-Liang. Formic Acid Oxidation by Pd Monolayers on Pt3Ni Nanocubes[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 337-342.
[8] LI Li, HE Xiao-Li, QIN Tao, DAI Fu-Tao, ZHANG Xiao-Hua, CHEN Jin-Hua. Dual-Sacrificial Template Synthesis of One-Dimensional Tubular Pt-Mn3O4-C Composite with Excellent Electrocatalytic Performance for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 927-932.
[9] GAO Hai-Li, LI Xiao-Long, HE Wei, GUO Rui-Ting, CHAI Bo. One-Step Synthesis of Reduced Graphene Oxide Supported Pt Nanoparticles and Its Electrocatalytic Activity for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2117-2123.
[10] WANG Li, MA Jun-Hong. Synthesis and Electrocatalytic Properties of Pt Nanoparticles on Nitrogen-Doped Reduced Graphene Oxide for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2014, 30(7): 1267-1273.
[11] WANG Chun, KANG Jian-Xin, WANG Li-Li, CHEN Ting-Wen, LI Jie, ZHANG Dong-Feng, GUO Lin. Synthesis of Quasi-Concave Pt-Ni Nanoalloys via Overgrowth and Their Catalytic Performance towards Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2014, 30(4): 708-714.
[12] ZHOU Yang, HU Xian-Chao, LI Li-Qing, CHEN Xi-Rong. Palladium Nanoparticles Supported on Hollow Mesoporous Tungsten Trioxide Microsphere as Electrocatalyst for Formic Acid Oxidation[J]. Acta Physico-Chimica Sinica, 2014, 30(1): 83-87.
[13] ZHOU Yang, LIU Wei-Ming, HU Xian-Chao, CHU You-Qun, MA Chun-An. Nano-WO3 Composite Materials as Electro-Catalyst for Methanol Oxidation[J]. Acta Physico-Chimica Sinica, 2013, 29(07): 1487-1493.
[14] LI Shang, WANG Jia-Tang, CHEN Rui-Xin, ZHAO Wei, QIAN Liu, PAN Mu. Catalytic Performance of Heat-Treated Fe-Melamine/C and Fe-g-C3N4/C Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinica, 2013, 29(04): 792-798.
[15] ZHOU Yang, CHU You-Qun, LIU Wei-Ming, MA Chun-An. Nano-WO3 Modified Carbon Nanotube Supported Pt and Their Electrocatalytic Activity for Methanol Electro-Oxidation[J]. Acta Physico-Chimica Sinica, 2013, 29(02): 287-292.