Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (05): 1259-1263    DOI: 10.3866/PKU.WHXB20100334
ELECTROCHEMISTRY     
Preparation and Electrochemical Properties of SnO2/Onion-Like Hollow Carbon Nanoparticle Composites as Anode Materials for Lithium-Ion Batteries
ZHANG Hui-Juan, SONG Huai-He, ZHOU Ji-Sheng, ZHANG Hong-Kun, CHEN Xiao-Hong
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029
Download:   PDF(1345KB) Export: BibTeX | EndNote (RIS)      

Abstract  

New kinds of onion-like hollowcarbon nanoparticles (OC) with amean diameter of 40 nmwere synthesized by the pyrolysis of carbon black at 1000 ℃ in a nitrogen atmosphere using ferric nitrate as the catalyst precursor. By impregnating with a SnCl2/ethanol solution and oxidation in air at 350 ℃, OC doped SnO2 nanoparticle composites were obtained. Then, by rinsing with hydrochloric acid to remove the coated SnO2 nanoparticles, OC-encapsulated SnO2 nanoparticle composites were prepared. The morphologies and structures of OC and the composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The content of SnO2 in the composite was measured by thermogravimetric analysis (TGA). The electrochemical properties of the composites as anode materials for lithium-ion batteries were evaluated by galvanostatical method and cyclic voltammetry (CV). We found that after acid treatment the sample possessed a reversible capacity of 446 mAh·g-1 after 50 cycles and excellent cycle stability. This indicates that OC is a suitable matrix to buffer against volume expansion and to prevent the agglomeration of SnO2 nanoparticles.



Key wordsNano onion-like carbon      Tin dioxide      Composite      Anode materials      Lithium-ion battery     
Received: 17 September 2009      Published: 03 February 2010
MSC2000:  O646  
Corresponding Authors: SONG Huai-He     E-mail: songhh@mail.buct.edu.cn
Cite this article:

ZHANG Hui-Juan, SONG Huai-He, ZHOU Ji-Sheng, ZHANG Hong-Kun, CHEN Xiao-Hong. Preparation and Electrochemical Properties of SnO2/Onion-Like Hollow Carbon Nanoparticle Composites as Anode Materials for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2010, 26(05): 1259-1263.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20100334     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2010/V26/I05/1259

[1] WANG Hai-Yan, SHI Gao-Quan. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinica, 2018, 34(1): 22-35.
[2] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[3] LI Guo-Min, ZHU Bao-Shun, LIANG Li-Ping, TIAN Yu-Ming, Lü Bao-Liang, WANG Lian-Cheng. Core-Shell Co3Fe7@C Composite as Efficient Microwave Absorbent[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1715-1720.
[4] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[5] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[6] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[7] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[8] ZHANG Chi, WU Zhi-Jiao, LIU Jian-Jun, PIAO Ling-Yu. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1492-1498.
[9] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[10] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[11] WANG Mei-Song, ZOU Pei-Pei, HUANG Yan-Li, WANG Yuan-Yuan, DAI Li-Yi. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1230-1235.
[12] LI Jun-Tao, WU Jiao-Hong, ZHANG Tao, HUANG Ling. Preparation of Biochar from Different Biomasses and Their Application in the Li-S Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 968-975.
[13] LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 554-562.
[14] FANG Min, WANG Zong-Yuan, LIU Chang-Jun. Characterization and Application of Au Nanoparticle/Agarose Composite Film Fabricated by Room Temperature Electron Reduction[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 435-440.
[15] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.