Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (06): 1499-1506    DOI: 10.3866/PKU.WHXB20100608
ELECTROCHEMISTRY     
Influence of Electrolyte Composition on the Intercalation-Deintercalation Process of Lithium Ion in Spinel LiMn2O4
QIU Xiang-Yun, ZHUANG Quan-Chao, WANG Hong-Ming, CUI Yong-Li, FANG Liang, SUN Shi-Gang
School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, P. R. China; State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(1370KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Variations in the impedance spectra of the commercially available spinel LiMn2O4 electrode from -20 to 20 ℃ were investigated by electrochemical impedance spectroscopy (EIS) in 1 mol·L-1 LiPF6-EC (ethylene carbonate)|DEC (diethyl carbonate)|DMC (dimethyl carbonate), 1 mol·L-1 LiPF6-EC|DEC|EMC (ethyl methyl carbonate) and 1 mol·L -1 LiPF6-EC |DMC electrolyte solutions. We found that the impedance spectral characteristics of the spinel LiMn2O4 electrode was strongly influenced by temperature and only slightly influenced by the electrolyte composition. However, the electronic resistance and the resistance of the SEI filmas well as the charge transfer reaction resistance of the spinel LiMn2O4 electrode were strongly influenced by the electrolyte composition. In 1 mol·L-1 LiPF6-EC|DEC|DMC, 1 mol·L-1 LiPF6-EC|DEC|EMC and 1 mol·L-1 LiPF6-EC|DMC electrolyte solutions, the energy barriers for the ion jump relating to the migration of lithium ions through the solid electrolyte interphase (SEI) film of the spinel LiMn2O4 electrode were determined to be 7.60, 16.40, and 18.40 kJ·mol-1. The thermal active energies of the electronic conductivities were 44.77, 35.47, and 68.06 kJ·mol-1 and the intercalation-deintercalation reaction active energies were 52.19, 46.19, and 69.86 kJ·mol-1, respectively.



Key wordsLithium-ion battery      Spinel LiMn2O4      Solid electrolyte interphase film      Electronic resistance      Charge transfer reaction resistance     
Received: 29 October 2009      Published: 20 April 2010
MSC2000:  O646  
Corresponding Authors: ZHUANG Quan-Chao, SUN Shi-Gang     E-mail: zhuangquanchao@126.com; sgsun@xmu.edu.cn
Cite this article:

QIU Xiang-Yun, ZHUANG Quan-Chao, WANG Hong-Ming, CUI Yong-Li, FANG Liang, SUN Shi-Gang. Influence of Electrolyte Composition on the Intercalation-Deintercalation Process of Lithium Ion in Spinel LiMn2O4. Acta Physico-Chimica Sinica, 2010, 26(06): 1499-1506.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20100608     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2010/V26/I06/1499

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[2] TIAN Ai-Hua, WEI Wei, QU Peng, XIA Qiu-Ping, SHEN Qi. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1621-1627.
[3] LIAO You-Hao, LI Wei-Shan. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1533-1547.
[4] JU Guang-Kai, TAO Zhan-Liang, CHEN Jun. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1421-1428.
[5] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1197-1204.
[6] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[7] BAI Xue-Jun, HOU Min, LIU Chan, WANG Biao, CAO Hui, WANG Dong. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 377-385.
[8] NIU Xiao-Ye, DU Xiao-Qin, WANG Qin-Chao, WU Xiao-Jing, ZHANG Xin, ZHOU Yong-Ning. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2517-2522.
[9] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 18-27.
[10] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2293-2300.
[11] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1999-2006.
[12] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinica, 2016, 32(5): 1056-1061.
[13] CAI Li-Li, WEN Yue-Hua, CHENG Jie, CAO Gao-Ping, YANG Yu-Sheng. Synthesis and Electrochemical Performance of a Benzoquinone-Based Polymer Anode for Aqueous Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(4): 969-974.
[14] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 717-722.
[15] ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(5): 905-912.