Please wait a minute...
Acta Phys. -Chim. Sin.  2010, Vol. 26 Issue (08): 2151-2157    DOI: 10.3866/PKU.WHXB20100636
ELECTROCHEMISTRY     
Electrochemical Capacitance of Composites with MnOx Loaded on the Surface of Activated Carbon Electrodes
TIAN Ying1,2, YAN Jing-Wang1, LIU Xiao-Xue1, XUE Rong1, YI Bao-Lian1
1. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China;
2. College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, P. R. China
Download:   PDF(3155KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Activated carbon/manganese oxide (MnOx) composites were prepared by the thermal decomposition of Mn(NO3)2 that was impregnated on the surface of activated carbon XC-72 with a specific surface area of 250 m2·g-1 and on YEC-8 with a specific surface area of 1726 m2·g-1 at 200 ℃. The surface morphology and crystalline structure of the composites were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The electrochemical properties of the composites were tested by cyclic voltammetry, galvanostatic charge-discharge, and impedance spectroscopy. We found that α-Mn2O3 and α-Mn3O4 were formed when the composites were annealed at 200 ℃. At mass ratios of C and MnOx of 2∶1 and 9∶1, the specific capacitance of MnOx in the composites of XC-72/MnOx was 499 and 435 F·g-1 and the specific capacitance of MnOx in the composites of YEC-8/MnOx was 554 and 606 F·g-1, respectively. This suggests a significant contribution of pseudocapacitance from MnOx to the specific capacitance of the electrode.



Key wordsSupercapacitor      Manganese oxide      Activated carbon      Thermal decomposition     
Received: 22 December 2009      Published: 10 May 2010
MSC2000:  O646  
Fund:  

The project was supported by the Important Directional Project of ‘the Research and Exploration of Supercapacitor Storage System for Electric Vehicle’ from Dalian Institute of Chemical Physics, Chinese Academy of Sciences.

Corresponding Authors: YAN Jing-Wang     E-mail: yanjw@dicp.ac.cn
Cite this article:

TIAN Ying, YAN Jing-Wang, LIU Xiao-Xue, XUE Rong, YI Bao-Lian. Electrochemical Capacitance of Composites with MnOx Loaded on the Surface of Activated Carbon Electrodes. Acta Phys. -Chim. Sin., 2010, 26(08): 2151-2157.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20100636     OR     http://www.whxb.pku.edu.cn/Y2010/V26/I08/2151

[1]. Wang, D. W.; Cheng, H. M. Chin. Sci. Bull., 2008, 53: 975 [王大伟, 成会明. 科学通报, 2008, 53: 975]
[2]. Mondal, S. K.; Munichandraiah, N. J. Power Sources, 2008, 175: 65763
[3]. Wu, N. L.; Kuo, S. L.; Lee, M. H. J. Power Sources, 2002, 104: 62
[4]. Zhang, H. J.; Tang, F, Q,; Jin, Y.; Wang, L. Z.; Chen, Y. C.; Lim, M.; Zhang, L.; Lu, G. Q. Carbon, 2009, 47: 1534
[5]. Beaudrouet, E.; Le Gal La Salle, A.; Guyomard, D. Electrochim. Acta, 2009, 54: 1240
[6]. Pang, S. C.; Anderson, M. A.; Chapman,T. W. J. J. Electrochem. Soc., 2000, 147: 444
[7]. Shinomiya, T.; Gupta, V.; Miura, N. Electrochim. Acta, 2006, 51: 4412
[8]. Prasad, K. R.; Miura, N. J. Power Sources, 2004, 135: 354
[9]. Nagarajan, N.; Cheong M.; Zhitomirsky, I. Mater. Chem. Phys., 2007, 103: 47
[10]. Broughton, J. N.; Brett, M. J. Electrochim. Acta, 2005, 50: 4814
[11]. Brousse, T.; Taberna, P. L.; Crosnier, O.; Dugasa, R.; Guillemet, P.; Scudeller,Y.; Zhou, Y.; Favier , F.; Belanger, D.; Simon, P. J. Power Sources, 2007, 173 : 633
[12]. Yoon, S.; Lee, C.; Ohb, S. M.; Parka, Y. K.; Choi, W. C. J. Non-Cryst. Solids, 2009, 355: 252
[13]. Sharma, R. K; Oh, H. S.; Shul, Y. G.; Kim, H. J. Power Sources, 2007, 173: 1024
[14]. Koa, J. M.; Kim, K. M. Mater. Chem. Phys., 2009, 114: 837
[15]. Deng, M. G.; Zhang, Z. A.; Hu, Y. D.; Wang, B. H.; Yang, B. C. J. Chin. Ceram. Soc., 2004, 32:411. [邓梅根, 张治安, 胡永达, 汪斌华, 杨邦朝. 硅酸盐学报 , 2004, 32: 411]
[16]. Wang, H. B.; Tian, Y. H. Chin. J. Rare Met., 2007, 31: 197 [王海滨, 田艳红. 稀有金属, 2007, 31: 197]
[17]. Lei, Y.; Fournier, C.; Pascal, J. L.; Favier, F. Mesop. Mater., 2008, 110: 167
[18]. Xie, X.; Gao, L. Carbon, 2007, 45: 2365
[19]. Li, J.; Zhitomirsky, I. J. Mater. Process. Technol., 2009, 209: 3452
[20]. Zheng, H.; Tang, F.; Jia, Y.; Wang, L.; Chen, Y.; Lim, M.; Zhang, L.; Lu, G. Carbon, 2009, 47: 1534
[21]. Chang, J. K.; Huang, C. H.; Lee, M. T.; Tsai, W. T.; Deng, M. J.; Sun, I. W. Electrochim. Acta, 2009, 54: 3278
[22]. Jeong, Y. U.; Manthiram, A. J. Electrochem. Soc., 2002, 149: A1419
[23]. Chang, J. K.; Chen, Y. L.; Tsai, W. T. J. Power Sources, 2004, 135: 344
[24]. Ragupathy, P.; Vasan, H. N.; Munichandraiah, N. J. Electrochem. Soc., 2008, 155: A34
[25]. Sugimoto, W.; Iwata, H.; Yokoshima, K.; Murakami,Y.; Takasu, Y. J. Phys. Chem. B, 2005, 109: 7330
[26]. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G. J. Power Sources, 2009, 186: 543

[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Chunxing REN,Xiaoxia LI,Li GUO. Reaction Mechanisms in the Thermal Decomposition of CL-20 Revealed by ReaxFF Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1151-1162.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[4] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[5] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[6] Li-Juan PENG,Qian YAO,Jing-Bo WANG,Ze-Rong LI,Quan ZHU,Xiang-Yuan LI. Pyrolysis of RDX and Its Derivatives via Reactive Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 745-754.
[7] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[8] Hai-Yang YU,Fang WANG,Qi-Chun LIU,Qing-Yu MA,Zheng-Gui GU. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 344-355.
[9] Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 370-376.
[10] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[11] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[12] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[13] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[14] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.
[15] Cheng-Wei JIN,Ye WANG,Su-Ling XU,Jian-Jun ZHANG. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3, 4-Diethoxybenzoic Acid and 2, 2'-Bipyridine[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2232-2240.