Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (08): 2130-2134    DOI: 10.3866/PKU.WHXB20100808
ELECTROCHEMISTRY     
High Rate Capability of 5 V LiNi0.5Mn1.5O4 Cathode Materials Synthesized via a Gel-Combustion Method
DAI Ke-Hua, MAO Jing, ZHAI Yu-Chun
School of Materials and Metallurgy, Northeastern University, Shenyang 110004, P. R. China
Download:   PDF(722KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Sub-micron LiNi0.5Mn1.5O4 with excellent high rate performance was synthesized by a polyvinylpyrrolidone-assisted gel-combustion method. Thermogravimetric and differential thermal analyses (TG/DTA) were used to determine the nature of the combustion process of the gel. The structure and morphology of the as-prepared materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and cyclic voltammetry (CV). The results showed that the LiNi0.5Mn1.5O4 powders were single-phase spinel and consisted of uniform secondary particles (5 μm), which were formed by small primary particles (500 nm). Galvanostatic charge-discharge tests indicated that the LiNi0.5Mn1.5O4 had an excellent rate capability and cyclic performance. When discharged at a rate of 0.5C, 1C, 4C, 8C,and 10C between 3.5 and 4.9 V, the discharge capacity is 131.9, 127.6, 123.4, 118.4, and 113.7 mAh·g-1, respectively. Upon long cycling under a high discharge rate of 10C, the capacity retentions after 100, 500, and 1000 cycles were 91.4%, 80.9%, and 73.5%, respectively.



Key wordsLithium ion battery      Cathode material      LiNi0.5Mn1.5O4      Gel-combustion method      Polyvinylpyrrolidone     
Received: 21 January 2010      Published: 10 June 2010
MSC2000:  O646  
Fund:  

The project was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20090042120013) and Special Funds for Development of Human Resources of Shenyang, China (2009010103040).

Corresponding Authors: ZHAI Yu-Chun     E-mail: zhaiyc@smm.neu.edu.cn
Cite this article:

DAI Ke-Hua, MAO Jing, ZHAI Yu-Chun. High Rate Capability of 5 V LiNi0.5Mn1.5O4 Cathode Materials Synthesized via a Gel-Combustion Method. Acta Physico-Chimica Sinica, 2010, 26(08): 2130-2134.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20100808     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2010/V26/I08/2130

[1]. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Angew. Chem. Int. Edit., 2008, 47: 2930
[2]. Zhong, Q. M.; Bonakdarpour, A.; Zhang, M. J.; Gao, Y.; Dahn, J. R. J. Electrochem. Soc., 1997, 144: 205
[3]. Amine, K.; Tukamoto, H.; Yasuda, H.; Fujita, Y. J. Power Sources, 1997, 68: 604
[4]. Ariyoshi, K.; Yamamoto, S.; Ohzuku, T. J. Power Sources, 2003, 119: 959
[5]. Patoux, S.; Daniel, L.; Bourbon, C.; Lignier, H.; Pagano, C.; Le Cras, F.; Jouanneau, S.; Martinet, S. J. Power Sources, 2009, 189: 344
[6]. Arrebola, J. C.; Caballero, A.; Cruz, M.; Hernán, L.; Morales, J.; Castell?仵n, E. R. Adv. Funct. Mater., 2006, 16: 1904
[7]. Talyosef, Y.; Markovsky, B.; Lavi, R.; Salitra, G.; Aurbach, D.; Kovacheva, D.; Gorova, M.; Zhecheva, E.; Stoyanova, R. J. Electrochem. Soc., 2007, 154: A682
[8]. Shaju, K. M.; Bruce, P. G. Dalton Trans., 2008: 5471
[9]. Du, G. D.; Nuli, Y. N.; Feng, Z. Z.; Wang, J. L.; Yang, J. Acta Phys. -Chim. Sin., 2008, 24:165. [杜国栋, 努丽燕娜, 冯真真, 王久林, 杨 军. 物理化学学报, 2008, 24: 165]
[10]. Kunduraci, M.; Amatucci, G. G. Electrochim. Acta, 2008, 53: 4193
[11]. Fan, W. F.; Liu, X. Q. Science & Technology in Chemical Industry, 2007, 15:52. [范未峰, 刘兴泉. 化工科技, 2007, 15: 52]
[12]. Idemoto, Y.; Narai, H.; Koura, N. J. Power Sources, 2003, 119: 125
[13]. Chen, Z. Y.; Zhu, H. L.; Ji, S.; Linkov, V.; Zhang, J. L.; Zhu, W. J. Power Sources, 2009, 189: 507
[14]. Sun, Q.; Li, X. H.; Wang, Z. X.; Ji, Y. Trans. Nonferrous Met. Soc. China, 2009, 19: 176
[15]. Wen, L.; Qi, L.; Xu, G. X. Electrochim. Acta, 2006, 51: 4388
[16]. Kim, J. H.; Myung, S. T.; Sun, Y. K. Electrochim. Acta, 2004, 49: 219
[17]. Wu, X. L.; Kim, S. B. J. Power Sources, 2002, 109: 53
[18]. Hwang, B. J.; Wu, Y. W.; Venkateswarlu, M.; Cheng, M. Y.; Santhanam, R. J. Power Sources, 2009, 193: 828
[19]. Yi, T. F.; Zhu, Y. R. Electrochim. Acta, 2008, 53: 3120
[20]. Liu, G. Q.; Wang, Y. J.; Qi, L.; Li, W.; Chen, H. Electrochim. Acta, 2005, 50: 1965
[21]. Yan, Q. X.; Wang, Z. X.; Wu, J.; Li, X. H.; Tan, Q. Y. J. Funct. Mater., 2009, 40:933. [颜群轩, 王志兴, 吴 晶, 李新海, 谭群英. 功能材料, 2009, 40: 933]
[22]. Myung, S. T.; Komaba, S.; Kumagai, N.; Yashiro, H.; Chung, H. T.; Cho, T. H. Electrochim. Acta, 2002, 47: 2543
[23]. Park, S. H.; Sun, Y. K. Electrochim. Acta, 2004, 50: 431
[24]. Lazarraga, M. G.; Pascual, L.; Gadjov, H.; Kovacheva, D.; Petrov, K.; Amarilla, J. M.; Rojas, R. M.; Martin-Luengo, M. A.; Rojo, J. M. J. Mater. Chem., 2004, 14: 1640
[25]. Aklalouch, M.; Rojas, R. M.; Rojo, J. M.; Saadoune, I.; Amarilla, J. M. Electrochim. Acta, 2009, 54: 7542
[26]. Fan, W. F.; Qu, M. Z.; Peng, G. C.; Yu, Z. L. Chin. J. Inorg. Chem., 2009, 25:124. [范未峰, 瞿美臻, 彭工厂, 于作龙. 无机化学学报, 2009, 25: 124]
[27]. Zhao, Q. L.; Ye, N. Q.; Xi, Q. F.; Huang, Y. Z. Chin. Chem. Bull., 2009, 72(11):1045. [赵巧丽, 叶乃清, 喜全芳, 黄耀志. 化学通报, 2009, 72(11): 1045]
[28]. Amarilla, J. M.; Rojas, R. M.; Pico, F.; Pascual, L.; Petrov, K.; Kovacheva, D.; Lazarraga, M. G.; Lejona, I.; Rojo, J. M. J. Power Sources, 2007, 174: 1212
[29]. Caballero, A.; Cruz, M.; Hernan, L.; Melero, M.; Morales, J.; Castellon, E. R. J. Power Sources, 2005, 150: 192
[30]. Kovacheva, D.; Markovsky, B.; Salitra, G.; Talyosef, Y.; Gorova, M.; Levi, E.; Riboch, M.; Kim, H. J.; Aurbach, D. Electrochim. Acta, 2005, 50: 5553
[31]. Arrebola, J. C.; Caballero, A.; Hernan, L.; Morales, J. Electrochem. Solid-State Lett., 2005, 8: A641
[32]. Kunduraci, M.; Al-Sharab, J. F.; Amatucci, G. G. Chem. Mater., 2006, 18: 3585
[33]. Rho, Y. H.; Dokko, K.; Kanamura, K. J. Power Sources, 2006, 157: 471
[34]. Arrebola, J. C.; Caballero, A.; Hernan, L.; Morales, J. J. Power Sources, 2008, 180: 852
[35]. Takahashi, K.; Saitoh, M.; Sano, M.; Fujita, M.; Kifune, K. J. Electrochem. Soc., 2004, 151: A173
[36]. Ariyoshi, K.; Iwakoshi, Y.; Nakayama, N.; Ohzuku, T. J. Electrochem. Soc., 2004, 151: A296
[37]. Kim, J. H.; Myung, S. T.; Yoon, C. S.; Kang, S. G.; Sun, Y. K. Chem. Mater., 2004, 16: 906
[38]. Kunduraci, M.; Amatucci, G. G. J. Electrochem. Soc., 2006, 153: A1345
[39]. Kunduraci, M.; Amatucci, G. G. J. Power Sources, 2007, 165: 359

[1] HE Lei, XU Jun-Min, WANG Yong-Jian, ZHANG Chang-Jin. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(8): 1605-1613.
[2] GAN Yong-Ping, LIN Pei-Pei, HUANG Hui, XIA Yang, LIANG Chu, ZHANG Jun, WANG Yi-Shun, HAN Jian-Feng, ZHOU Cai-Hong, ZHANG Wen-Kui. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1189-1196.
[3] LI Wan-Long, LI Yue-Jiao, CAO Mei-Ling, QU Wei, QU Wen-Jie, CHEN Shi, CHEN Ren-Jie, WU Feng. Synthesis and Electrochemical Performance of Alginic Acid-Based Carbon-Coated Li3V2(PO4)3 Composite by Rheological Phase Method[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2261-2267.
[4] LI Ya-Dong, DENG Yu-Feng, PAN Zhi-Yi, WEI Yin-Ping, ZHAO Shi-Xi, GAN Lin. Dual Electron Energy Loss Spectrum Imaging of the Surfaces of LiNi0.5Mn1.5O4 Cathode Material[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2293-2300.
[5] FANG Yong-Jin, CHEN Zhong-Xue, AI Xin-Ping, YANG Han-Xi, CAO Yu-Liang. Recent Developments in Cathode Materials for Na Ion Batteries[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 211-241.
[6] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2287-2292.
[7] WUAi-Ming, XIA Guo-Feng, SHEN Shui-Yun, YIN Jie-Wei, MAO Ya, BAI Qing-You, XIE Jing-Ying, ZHANG Jun-Liang. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1866-1879.
[8] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1999-2006.
[9] HUANG Wei, WU Chun-Yang, ZENG Yue-Wu, JIN Chuan-Hong, ZHANG Ze. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1489-1494.
[10] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinica, 2016, 32(5): 1056-1061.
[11] KOU Jian-Wen, WANG Zhao, BAO Li-Ying, SU Yue-Feng, HU Yu, CHEN Lai, XU Shao-Yu, CHEN Fen, CHEN Ren-Jie, SUN Feng-Chun, WU Feng. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 717-722.
[12] LI Ting, LONG Zhi-Hui, ZHANG Dao-Hong. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 573-580.
[13] ZHU Shou-Pu, WU Tian, SU Hai-Ming, QU Shan-Shan, XIE Yong-Juan, CHEN Ming, DIAO Guo-Wang. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2016, 32(11): 2737-2744.
[14] SUN Xiao-Fei, XU You-Long, ZHENG Xiao-Yu, MENG Xiang-Fei, DING Peng, REN Hang, LI Long. Triple-Cation-Doped Li3V2(PO4)3 Cathode Material for Lithium Ion Batteries[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1513-1520.
[15] SHI Xia-Xing, LIAO Shi-Xuan, YUAN Bing, ZHONG Yan-Jun, ZHONG Ben-He, LIU Heng, GUO Xiao-Dong. Facile Synthesis of 0.6Li2MnO3-0.4LiNi0.5Mn0.5O2 with Hierarchical Micro/Nanostructure and High Rate Capability as Cathode Material for Li-Ion Battery[J]. Acta Physico-Chimica Sinica, 2015, 31(8): 1527-1534.