Please wait a minute...
Acta Phys. -Chim. Sin.  2010, Vol. 26 Issue (08): 2261-2266    DOI: 10.3866/PKU.WHXB20100815
Solvothermal Preparation of Ag/TiO2 Nanoparticles and Their Photocatalytic Activity
XU Ping-Chang1, LIU Yang1, WEI Jian-Hong1,2, XIONG Rui1, PAN Chun-Xu1, SHI Jing1  
1. Key Laboratory of Artificial Micro-and Nano-Structures, Ministry of Education, School of Physics Science and Technology, Wuhan University, Wuhan 430072, P. R. China;
2. Key Laboratory of Low Dimensional Materials and Application Technology (Xiangtan University), Ministry of Education, Xiangtan 411105, Hunan Province, P.R. China
Download:   PDF(387KB) Export: BibTeX | EndNote (RIS)      


Visible-light photoactive Ag/TiO2 catalysts were successfully prepared by a solvothermal method. The samples were characterized by X-ray diffraction (XRD), N2 adsorption-desorption isotherm (BET), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible (UV-Vis) spectroscopy. The photodegradation of methylene blue (MB) solution was used to evaluate the photocatalytic activity of the catalyst under UV and visible light irradiation (λ>400 nm). XRD results showed that the TiO2 was in the pure anatase phase. Ag nanoparticles were loaded onto the TiO2 nanoparticle surface and this had little influence on the crystal phase and the particle size of TiO2. The specific surface area of the samples was far higher than that for the samples prepared by the sol-gel method and the sample with Ag molar fraction of 5% had the highest value of 151.44 m2·g-1. The absorption spectrum of the Ag-modified TiO2 increased greatly and the adsorption edge was extended into the visible region. The photodegradation of MB solution followed a pseudo-first-order kinetic expression. The photocatalytic activities of the Ag/TiO2 composites prepared by the solvothermal method were remarkably higher than those prepared by the sol-gel method. Under UV or visible light irradiation, the optimal photoactivity was obtained for the sample with a Ag molar fraction of 5%.

Key wordsTitania      Silver-modified      Solvothermal method      Sol-gel method      Methylene blue      Photocatalysis     
Received: 08 March 2010      Published: 18 June 2010
MSC2000:  O643  

The project was supported by the National Key Basic Research Program of China (973) (2009CB939704), National Natural Science Foundation of China (10974148) and the Open Project Program of Low Dimensional Materials and Application Technology (Xiangtan University), Ministry of Education of China (DWKF0806).

Corresponding Authors: WEI Jian-Hong     E-mail:
Cite this article:

XU Ping-Chang, LIU Yang, WEI Jian-Hong, XIONG Rui, PAN Chun-Xu, SHI Jing. Solvothermal Preparation of Ag/TiO2 Nanoparticles and Their Photocatalytic Activity. Acta Phys. -Chim. Sin., 2010, 26(08): 2261-2266.

URL:     OR

[1]. Lee, S. H.; Kang, M.; Cho, S. M.; Han, G. Y.; Kim, B. W.; Yoon, K. J.; Chung, C. H. J. Photochem. Photobiol. A, 2001, 146: 121
[2]. Kim, C. S.; Moon, B. K.; Park, J. H.; Chung, S. T.; Son, S. M. J. Cryst. Growth, 2003, 254: 405
[3]. Wu, J. J.; Lü, X. J.; Zhang, L. L.; Huang, F. Q.; Xu, F. F. Eur. J. Inorg. Chem., 2009: 2789
[4]. Kolenko, Y. V.; Burukhin, A. A.; Churagulov, B. R.; Oleynikov, N. N. Mater. Lett., 2003, 57: 1124
[5]. Fujishima, A.; Rao, T. N.; Tryk, D. A. J. Photochem. Photobiol. C- Photochem. Rev., 2000, 1: 1
[6]. Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M. J. Photochem. Photobiol. A-Chem., 2002, 148: 257
[7]. Chen, X. B.; Mao, S. S. Chem. Rev., 2007, 107: 2891
[8]. Im, J. S.; Yun, S. M.; Lee, Y. S. J. Colloid Interface Sci., 2009, 336: 183
[9]. Yu, A. M.; Wu, G. J.; Yan, J. J.; Zheng, C. M.; Zhang, F. X.; Yang, Y. L.; Guan, N. J. Chin. J. Catal., 2009, 30(2):137. [于爱敏, 武光军, 严晶晶, 郑春明, 章福祥, 杨雅莉, 关乃佳. 催化学报, 2009, 30(2): 137]
[10]. Zhao, Q. H.; Quan, X. J.; Tan, H. Q.; Sang, X. M. Chin. J. Catal., 2008, 29(3):269. [赵清华, 全学军, 谭怀琴, 桑雪梅. 催化学报, 2008, 29(3): 269]
[11]. Siemon, U.; Bahnemann, D.; Testa, J. J.; Rodriguez, D.; Litter, M. I.; Bruno, N. J. Photochem. Photobiol. A-Chem., 2002, 148: 247
[12]. Navio, J. A.; Testa, J. J.; Djedjeian, P.; Padron, J. R.; Rodriguez, D.; Litter, M. I. Appl. Catal. A, 1999, 178: 191
[13]. Pal, B.; Ikeda, S.; Kominami, H.; Kera, Y.; Ohtani, B. J. Catal., 2003, 217: 152
[14]. Kryukova, G. N.; Zenkovets, G. A.; Shutilov, A. A.; Wilde, M.; Gunther, K.; Fassler, D.; Richter, K. Appl. Catal. B, 2007, 71: 169
[15]. Xia, X. H.; Gao, Y.; Wang, Z.; Jia, Z. J. J. Phys. Chem. Solids, 2008, 69: 2888
[16]. Silva, A. M. T.; Silva, C. G.; Drazic, G.; Faria, J. L. Catal. Today, 2009, 144: 13
[17]. Su, B. T.; Sun, J. X.; Hu, C. L.; Zhang, X. H.; Fei, P.; Lei, Z. Q. Acta Phys. -Chim. Sin., 2009, 25(8):1561. [苏碧桃, 孙佳星, 胡常林, 张小红, 费 鹏, 雷自强. 物理化学学报, 2009, 25(8): 1561]
[18]. Cheng, G.; Zhou, X. D.; Li, Y.; Tong, P. R.; Wang, L. M. Chin. J. Catal, 2007, 28(10):885. [程 刚, 周孝德, 李 艳, 仝攀瑞, 王理明. 催化学报, 2007, 28(10): 885]
[19]. Kandiel, T. A.; Dillert, R.; Bahnemann, D. W. Photochem. Photobiol. Sci., 2009, 8: 683
[20]. Jiang, D.; Xu, Y.; Hou, B.; Wu, D.; Sun, Y. H. Acta Chim. Sin., 2007, 65(14):1289. [姜 东, 徐 耀, 侯 博, 吴 东, 孙予罕. 化学学报, 2007, 65(14): 1289]
[21]. Binitha, N. N.; Yaakob, Z.; Reshmi, M. R.; Sugunan, S.; Ambili, V. K.; Zetty, A. A. Catal. Today, 2009, 147S: S76
[22]. You, X. F.; Chen, F.; Zhang, J. L.; Huang, J. Z.; Zhang, L. Z. Chin. J. Catal., 2006, 27(3):270. [尤先锋, 陈 锋, 张金龙, 黄家桢, 张利中. 催化学报, 2006, 27(3): 270]
[23]. Mei, F.; Liu, C.; Zhang, L.; Ren, F.; Zhou, L.; Zhao, W. K.; Fang, Y. L. J. Cryst. Growth, 2006, 292: 87
[24]. Li, F. B.; Li, X. Z.; Hou, M. F. Appl. Catal. B, 2004, 48: 185
[25]. Zhang, H. J.; Chen, G. H. Environ. Sci. Technol., 2009, 43: 2905
[26]. Kuo, Y. L.; Chen, H. W.; Ku, Y. Thin Solid Films, 2007, 515: 3461
[27]. Wei, F. Y.; Ni, L. S. Chin. J. Catal., 2007, 28(10):905. [魏凤玉, 倪良锁. 催化学报, 2007, 28(10): 905]
[28]. Arabatzis, I. M.; Stergiopoulos, T.; Bernard, M. C.; Labou, D.; Neophytides, S. G.; Falaras, P. Appl. Catal. B, 2003, 42: 187
[29]. Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Chem. Eur. J., 2005, 11: 454
[30]. Liu, Y.; Liu, C. Y.; Zhang, Z. Y. Acta Chim. Sin., 2000, 58(4): 397 [刘 云, 刘春艳, 张志颖. 化学学报, 2000, 58(4): 397]
[31]. Shan, Z. C.; Wu, J. J.; Xu, F. F.; Huang, F. Q.; Ding, H. M. J. Phys. Chem. C, 2008, 112: 15423
[32]. You, X. F.; Chen, F.; Zhang, J. L.; Anpo, M. Catal. Lett., 2005, 102: 247
[33]. Xiao, Y.; Dang, L. Q.; An, L. Z.; Bai, S. Y.; Lei, Z. B. Chin. J. Catal., 2008, 29(1):31. [肖 义, 党利琴, 安丽珍, 白士英, 雷志斌. 催化学报, 2008, 29(1): 31]

[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[4] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[5] Yun-Long ZHANG,Yu-Zhi ZHANG,Li-Xin SONG,Yun-Feng GUO,Ling-Nan WU,Tao ZHANG. Synthesis and Photocatalytic Performance of Ink Slab-Like ZnO/Graphene Composites[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2284-2292.
[6] Hao ZHANG,Xin-Gang LI,Jin-Meng CAI,Ya-Ting WANG,Mo-Qing WU,Tong DING,Ming MENG,Ye TIAN. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[7] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[8] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[9] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[10] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[11] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[12] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[13] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.
[14] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.
[15] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 737-744.