Please wait a minute...
Acta Phys. -Chim. Sin.  2010, Vol. 26 Issue (08): 2158-2162    DOI: 10.3866/PKU.WHXB20100822
Optical and Electrochemical Properties of Ethynyl-Bridged Ferrocenes with Electron Donor Groups
CAO Qian-Yong1, LU Xin1, KUANG Ren-Yun2, LI Zhi-Hua1, YANG Zhen-Yu1
1. Department of Chemistry, Nanchang University, Nanchang 330031, P. R. China;
2. College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an 343009, Jiangxi Province, P. R. China
Download:   PDF(283KB) Export: BibTeX | EndNote (RIS)      


We present the synthesis, optical and electrochemical properties of three ethynyl-bridged ferrocenes with electron donor groups, Fc—C≡C—Ph-(p-OMe) (3a), Fc—C≡C—Ph-(p-NMe2) (3b) and Fc—C≡C—Ph—(p-NPh2) (3c). All three compounds show a Fe(II)Cp—C≡C—Ph—(p-R) (Cp=cyclopentadienyl) metal to ligand charge transition (MLCT) in 400-550 nm. Upon oxidation, 3a and 3c show a Cp—C≡C—Ph—(p-R)Fe(III) ligand to metal charge transition (LMCT) in the near-IR range (946 and 1044 nm). A reversible Fc+/Fc potential for 3a-3c and an irreversible Ph—NR+2/Ph—NR2 potential for 3b and 3c are observed by in the cyclic and differential pulse voltammetry. Finally, 3b shows an optical and electrochemical response upon protonation, with a red shift of the MLCT transition, an anodic shift of the Fc+/Fc potential, and disappearance of the Ph—NR+2/Ph—NR2 peak.

Key wordsFerrocene      Protonation      Absorption spectrum      Oxidation      Electrochemistry     
Received: 05 January 2010      Published: 25 June 2010
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (20963007), Bureau of Education of Jiangxi Province, China (GJJ09074) and Program for Innovative Research Team of Nanchang University, China.

Corresponding Authors: CAO Qian-Yong     E-mail:
Cite this article:

CAO Qian-Yong, LU Xin, KUANG Ren-Yun, LI Zhi-Hua, YANG Zhen-Yu. Optical and Electrochemical Properties of Ethynyl-Bridged Ferrocenes with Electron Donor Groups. Acta Phys. -Chim. Sin., 2010, 26(08): 2158-2162.

URL:     OR

[1]. Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res., 2001, 34: 40
[2]. Sauvage, J. P.; Collin, J. P.; Chambron, J. C.; Guillerez, S.; Coudret, C.; Balzani, V.; Barigelletti, F.; Cola, L. D.; Flamigni, L. Chem. Rev., 1994, 94: 993
[3]. Bella, S. D. Chem. Soc. Rev., 2001, 30: 355
[4]. Fery-Forgues, S.; Delavaux-Nicot, B. J. Photochem. Photobiol. A: Chem., 2000, 132: 137
[5]. Debroy, P.; Roy, S. Coord. Chem. Rev., 2007, 251: 203
[6]. Peris, E. Coord. Chem. Rev., 2004, 248: 279
[7]. Liao, Y.; Eichinger, B. E.; Firestone, K. A.; Haller, M.; Luo, J. D.; Kaminsky, W.; Benedict, J. B.; Reid, P. J.; Jen, A. K. Y.; Dalton, L. R.; Robinson, B. H. J. Am. Chem. Soc., 2005, 127: 2758
[8]. Delavaux-Nicot, B.; Maynadie, J.; Lavabre, D.; Fery-Forgues, S. Inorg. Chem., 2006, 45: 5691
[9]. Guldi, D. M.; Maggini, M.; Scorrano, G.; Prato, M. J. Am. Chem. Soc., 1997, 119: 974
[10]. Ceccon, A.; Santi, S.; Orian, L.; Bisello, A. Coord. Chem. Rev., 2004, 248: 683
[11]. Cuffe, L.; Hudson, R. D. A.; Gallagher, J. F.; Jennings, S.; McAdam, C. J.; Connelly, R. B. T.; Manning, A. R.; Robinson, B. H.; Simpson, J. Organometallics, 2005, 24: 2051
[12]. Chawdhury, N.; Long, N. J.; Mahon, M. F.; Ooi, L.; Raithby, P. R.; Rooke, S.; White, A. J. P.; Williams, D. J.; Younus, M. J. Organomet. Chem., 2004, 689: 840
[13]. Chen, Y. J.; Pan, D. S.; Chiu, C. F.; Su, J. X.; Lin, S. J.; Kwan, K. S. Inorg. Chem., 2000, 39: 953
[14]. Polin, J.; Schottenberger, H. Org. Synth., 1998, 9: 411
[15]. Xiao, H. B.; Shen, H.; Lin, Y. G.; Su, J. H.; Tian, H. Dyes Pigments, 2007, 73: 224
[16]. Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of laboratory chemicals. 2th ed. Oxford: Pergamon Press, 1980
[17]. Muthiah, C.; Kumar, K. P.; Mani, C. A.; Swamy, K. K. C. J. Org. Chem., 2000, 65: 3733
[18]. Kocher, S.; Lang, H. J. Organomet. Chem., 2001, 637-639: 198
[19]. Barlow, S.; Marder, S. R. Chem. Commun., 2000: 1555
[20]. Ju, H. D.; Tao, X. T.; Wan, Y.; Shi, J. H.; Yang J. X.; Xin, Q.; Zou, D. C.; Jiang, M. H. Chem. Phys. Lett., 2006, 432: 321
[21]. Barlow, S.; O′ahare, D. Chem. Rev., 1997, 637-669: 97
[22]. Martinez, R.; Ratera, I.; Tarraga, A.; Molina, P.; Veciana, J. Chem. Commun., 2006: 3809
[23]. McGale, E. M.; Robinson, B. H.; Simpson, J. Organometallics, 2003, 22: 931
[24]. Zucchero, A. J.; Wilson, J. N.; Bunz, U. H. F. J. Am. Chem. Soc., 2006, 128: 11872
[25]. García-Acosta, B.; Martínez-Mánez, R.; Sancenon, F.; Soto, J.; Rurack, K.; Spieles, M.; García-Breijo, E.; Gil, L. Inorg. Chem., 2007, 46: 3123
[26]. Goodall, W.; Williams, J. A. G. Chem. Commun., 2001: 2514

[1] Mingming YUAN,Difan LI,Xiuge ZHAO,Wenbao MA,Kang KONG,Wenxiu NI,Qingwen GU,Zhenshan HOU. Selective Oxidation of Glycerol with Hydrogen Peroxide Using Silica-Encapsulated Heteropolyacid Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 886-895.
[2] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[3] Zhi-Dan FU,Jia-Xin ZANG,Qing YE,Shui-Yuan CHENG,Tian-Fang KANG. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1855-1864.
[4] Ling-Xiao HU,Lian WANG,Fei WANG,Chang-Bin ZHANG,Hong HE. Catalytic Oxidation of o-Xylene over Pd/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1681-1688.
[5] Fang-Fang ZHENG,Qian LI,Hong ZHANG,Wei-Zheng WENG,Xiao-Dong YI,Yan-Ping ZHENG,Chuan-Jing HUANG,Hui-Lin WAN. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1689-1698.
[6] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[7] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[8] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1453-1461.
[9] . Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[10] Qian ZHU,Chao-Tun CAO,Chen-Zhong CAO. Extension and Application of Excited-State Constants of meta-Substituents[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 729-735.
[11] Ming-Hui HUANG,Bi-Yao JIN,Lian-Hua ZHAO,Shi-Gang SUN. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 563-572.
[12] Ming CHEN,Lin WANG,Tian TAN,Xue-Cai LUO,Zai ZHENG,Ruo-Chun YIN,Ji-Hu SU,Jiang-Feng DU. Radical Mechanism of Laccase-Catalyzed Catechol Ring-Opening[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 620-626.
[13] Yi-Fan RUAN,Nan ZHANG,Yuan-Cheng ZHU,Wei-Wei ZHAO,Jing-Juan XU,Hong-Yuan CHEN. New Developments in Photoelectrochemical Bioanalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 476-485.
[14] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[15] Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 370-376.