Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (09): 2503-2509    DOI: 10.3866/PKU.WHXB20100839
QUANTUM CHEMISTRY AND COMPUTATION CHEMISTRY     
Adsorption of Linear C2-C5 Olefins on HYand H-ZSM-5 Zeolites
GUO Yu-Hua1, PU Min2, CHEN Biao-Hua2
1. Huzhou Teachers College, Huzhou 313000, Zhejiang Province, P. R. China;
2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
Download:   PDF(1157KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The adsorption properties of linear C2-C5 olefins on HY and H-ZSM-5 zeolites were studied by the ONIOM(B3LYP/6-311++G(d,p):UFF)method. The results indicate that microcosmic interactions of the olefin molecules with the Br?nsted acid sites of the zeolites lead to the formation of π-complexes. The adsorption energies of olefins on zeolites increase with an increase in the number of carbon atoms, and the amount of increase is approximately constant (HY zeolites: ca 12 kJ·mol-1; H-ZSM-5 zeolites: ca 25 kJ·mol-1), which agrees well with the adsorption properties of alkanes on zeolites. The position of the double bond has a fairly large effect on the adsorption energies of olefins. The adsorption energies of 2-olefins are much higher than those of 1-olefins. The adsorption energies of olefins on the different types of zeolites also show a significant difference. The adsorption energies of olefins on small pore H-ZSM-5 zeolites are much larger than those on large pore HY zeolites. Furthermore, the confinement effect in the different types of zeolites is more obvious when the number of carbon atoms increase. From the microstructure, the distance between the adsorbent molecule and the acidic proton in the H-ZSM-5 zeolite is much bigger than that between the adsorbent molecule and the acidic proton in the HY zeolite. These are mainly attributed to differences in the van der Waals interactions for the different types of zeolites, and the small pore zeolites have much stronger van der Waals interactions. Frontier orbital calculations indicate that the catalytic activity of the large pore HY zeolite is similar for small olefins while the catalytic activity of the small pore H-ZSM-5 zeolite decreases slightly with increasing carbon number.



Key wordsAdsorption      Olefin      Zeolite      ONIOM     
Received: 02 February 2010      Published: 02 July 2010
MSC2000:  O641  
Fund:  

The project was supported by the National Key Basic Research Programof China (973) (2004CB217804).

Corresponding Authors: GUO Yu-Hua     E-mail: guoyuhua@hutc.zj.cn
Cite this article:

GUO Yu-Hua, PU Min, CHEN Biao-Hua. Adsorption of Linear C2-C5 Olefins on HYand H-ZSM-5 Zeolites. Acta Physico-Chimica Sinica, 2010, 26(09): 2503-2509.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20100839     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2010/V26/I09/2503

1. Derouane, E. G.; Andre, J. M.; Lucas, A. A. J. Catal., 1988, 110: 58
2. Madeira, F. F.; Gnep, N. S.; Magnoux, P.; Maury, S.; Cadran, N. Appl. Catal. A, 2009, 367: 39
3. Derouane, E. G.; Chang, C. D. Microporous Mesoporous Mat., 2000, 35-36: 425
4. Derouane, E. G. J. Mol. Catal. A, 1998, 134: 29
5. Kontnik-Matecka, B.; Górska, M.; Eysymontt, J.; Sa覥ek, A. J. Mol. Struct., 1982, 80: 199
6. White, J. L.; Beck, L. W.; Haw, J. F. J. Am. Chem. Soc., 1992, 114: 6182
7. Kondo, J. N.; Domen, K. J. Mol. Catal. A, 2003, 199: 27
8. Cant, N. W.; Hall, W. K. J. Catal., 1972, 25: 161
9. Yoda, E.; Kondo, J. N.; Domen, K. J. Phys. Chem. B, 2005, 109: 1464
10. Gee, J. C.; Prampin, D. S. Appl. Catal. A, 2009, 360: 71
11. Spoto, G.; Bordiga, S.; Ricchiardi, G.; Scarano, D.; Zecchina, A.; Borello, E. J. Chem. Soc. Faraday Trans., 1994, 90: 2827
12. Barrer, R. M. J. Colloid Interface Sci., 1966, 21: 415
13. Maesen, T. L. M.; Beerdsen, E.; Calero, S.; Dubbeldam, D.; Smit,B. J. Catal., 2006, 237: 278
14. Webster, C. E.; Cottone III, A.; Drago, R. S. J. Am. Chem. Soc., 1999, 121: 12127
15. M?ller, A.; Guimaraes, A. P.; Gl?ser, R.; Staudt, R. Microporous Mesoporous Mat., 2009, 125: 23
16. Frash, M. V.; Kazansky, V. B.; Rigby, A. M.; van Santen, R. A. J. Phys. Chem. B, 1998, 102: 2232
17. Rigby, A. M.; Frash, M. V. J. Mol. Catal. A, 1997, 126: 61
18. Zheng, X.; Blowers, P. J. Mol. Catal. A, 2006, 246: 1
19. Nieminen, V.; Sierka, M.; Murzin, D. Y.; Sauer J. J. Catal., 2005, 231: 393
20. Khaliullin, R. Z.; Bell, A. T.; Kazansky, V. B. J. Phys. Chem. A, 2001, 105: 10454
21. Banach, E.; Kozyra, P.; Rejmak, P.; Broc覥awik, E.; Datka, J. Catal. Today, 2008, 137: 493
22. Kasuriya, S.; Namuangruk, S.; Treesukol, P., Tirtowidjojo, M.; Limtrakul, J. J. Catal., 2003, 219: 320
23. Maihom, T.; Boekfa, B.; Sirijaraensre, J.; Nanok, T.; Probst, M.; Limtrakul, J. J. Phys. Chem. C, 2009, 113: 6654
24. Kalita, B.; Deka, R. C. J. Phys. Chem. C, 2009, 113: 16070
25. Namuangruk, S.; Khongpracha, P.; Pantu, P.; Limtrakul, J. J. Phys. Chem. B, 2006, 110: 25950
26. Clark, L. A.; Sierka, M.; Sauer, J. J. Am. Chem. Soc., 2003, 125: 2136
27. Boronat, M.; Viruela, P. M.; Corma, A. J. Am. Chem. Soc., 2004, 126: 3300
28. Zheng, A. M.; Chen, L.; Yang, J.; Zhang, M. J.; Su, Y. C.; Yue, Y.; Ye, C. H.; Deng, F. J. Phys. Chem. B, 2005, 109: 24273
29. Zheng, A. M.; Chen, L.; Yang, J.; Yue, Y.; Ye, C. H.; Lu, X.; Deng, F. Chem. Commun., 2005: 2474
30. Zheng, A. M.; Wang, L.; Chen, L.; Yue, Y.; Ye, C. H.; Lu, X.; Deng, F. ChemPhysChem, 2007, 8: 231
31. Wang, S. P.; Wang, Y. L.; Cao, L.; Xing, S. Y.; Zhou, D. H. Chin. J. Catal., 2009, 30: 305 [王善鹏,王伊蕾, 曹亮,邢双英,周丹 红.催化学报, 2009, 30: 305]
32. Olson, D. H.; Dempsey, E. J. Catal., 1969, 13: 221
33. van Koningsveld, H.; van Bekkum, H.; Jansen, J. C. Acta Crystallogr. B, 1987, 43: 127
34. Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press, 1989: 1-325
35. Becke, A. D. Phys. Rev. A, 1988, 38: 3098
36. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785
37. Pantu, P.; Boekfa, B.; Limtrakul, J. J. Mol. Catal. A, 2007, 277: 171
38. Bobuatong, K.; Limtrakul, J. Appl. Catal. A, 2003, 253: 49
39. Rungsirisakun, R.; Jansang, B.; Pantu, P.; Limtrakul, J. J. Mol. Struct., 2005, 733: 239
40. Namuangruk, S.; Tantanak, D.; Limtrakul, J. J. Mol. Catal., 2006, 256: 113
41. Froese, R. D. J.; Morokuma, K. Chem. Phys. Lett., 1999, 305: 419
42. Froese, R. D. J.; Morokuma, K. J. Phys. Chem. A, 1999, 103: 4580
43. Vreven, T.; Morokuma, K. J. Chem. Phys., 1999, 111: 8799
44. Vreven, T.; Morokuma, K. J. Phys. Chem. A, 2002, 106: 6167
45. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03. Revision B.04. Pittsburgh, PA: Gaussian Inc., 2003
46. Kondo, J. N.; Domen, K.; Wakabayashi, F. Microporous Mesoporous Mat., 1998, 21: 429
47. Mortier,W. J. Stud. Surf. Sci. Catal., 1988, 37: 253
48. Datka, J.; Boczar, M. React. Kinet. Catal. Lett., 1993, 51: 161
49. Benco, L.; Hafner, J.; Hutschka, F.; Toulhoat, H. J. Phys. Chem. B, 2003, 107: 9756
50. van Bokhoven, J. A.; Williams, B. A.; Ji, W.; Koningsberger, D. C.; Kung, H. H.; Miller, J. T. J. Catal., 2004, 224: 50
51. Babitz, S. M.; Williams, B. A.; Miller, J. T.; Snurr, R. Q.; Haag, W. O.; Kung, H. H. Appl. Catal. A, 1999, 179: 71

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 286-295.
[2] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 168-176.
[3] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1846-1854.
[4] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1898-1904.
[5] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1236-1241.
[6] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 960-967.
[7] LI Ling-Ling, CHEN Ren, DAI Jian, SUN Ye, ZHANG Zuo-Liang, LI Xiao-Liang, NIE Xiao-Wa, SONG Chun-Shan, GUO Xin-Wen. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 769-779.
[8] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 709-728.
[9] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 426-434.
[10] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2013-2021.
[11] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2029-2034.
[12] ZHANG Shao-Zheng, LIU Jia, XIE Yan, LU Yin-Ji, LI Lin, Lü Liang, YANG Jian-Hui, WEI Shi-Hao. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2022-2028.
[13] LI Yan-Ting, LIU Xin-Min, TIAN Rui, DING Wu-Quan, XIU Wei-Ning, TANG Ling-Ling, ZHANG Jing, LI Hang. An Approach to Estimate the Activation Energy of Cation Exchange Adsorption[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 1998-2003.
[14] DU Jun, WU Xiang-Ying, PAN Xing-Peng, YU Jiang. Oxygenation and Oxidation Desulfurization Properties of CeO2/NaY Catalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2337-2345.
[15] LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2264-2270.