Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (09): 2437-2442    DOI: 10.3866/PKU.WHXB20100910
Optimizational Preparation and Mesoporous Material Characteristics of a Novel Biomimetic Photocatalyst and Its Application to the Photocatalytic Degradation of Phenol
GAO Guan-Dao, LI Jing, ZHANG Ai-Yong, AN Xiao-Hong, ZHOU Lei
Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
Download:   PDF(1022KB) Export: BibTeX | EndNote (RIS)      


Hexagonal mesoporous silica (HMS) was synthesized using dodecylamine (DDA) or octadecylamine (ODA) as templates which were then removed by calcination or extraction. Characterization data of HMS from XRD and N2 adsorption-desorption proved that the optimized material were typical mesoporous materials based on the facts that the XRDdiffraction peak displayed apparently the feature of mesoporous materials and the N2 adsorption-desorption curve was typical of a type IV isothermand contained a type H1 desorption hysteresis loop. These novel photocatalysts had a BET surface area of 675.1 m2·g-1, an average pore diameter of 5.78 nm and a BJH pore volume of 0.587 cm3·g-1, and were prepared by the F—C reaction between functionalized HMS and iron sulfophthalocyanine (FePcS). Additionally, the catalysts preserved an undamaged heavy mesoporous structure. Upon the irradiation of the simulated visible light, these novel catalysts were applied to the degradation of simulated phenol wastewater at a concentration of 1000 mg·L-1. The conversion of phenol reached 85%and the pH decreased from the original 4.52 to 2.65 after reaction time of 400 min, which indicated that acid intermediates were produced during the photocatalysis of phenol. Finally, the conversion rate of phenol was nearly 100% and the total organic carbon (TOC) removal rate exceeded 81%. The novel catalyst is, therefore, highly effective for the degradation of phenol.

Key wordsHexagonal mesoporous silica      Iron sulfophthalocyanine      Pore characteristics      Optimizing preparation      Photocatalysis     
Received: 01 February 2010      Published: 13 July 2010
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (20803036), Plan on Scientific and Technological Personnel Serving Enterprise (2009GJA10014), Major Scientific and Technological Projects of Water Pollution Control and Treatment (2008ZX07314-003-2).

Corresponding Authors: GAO Guan-Dao     E-mail:
Cite this article:

GAO Guan-Dao, LI Jing, ZHANG Ai-Yong, AN Xiao-Hong, ZHOU Lei. Optimizational Preparation and Mesoporous Material Characteristics of a Novel Biomimetic Photocatalyst and Its Application to the Photocatalytic Degradation of Phenol. Acta Physico-Chimica Sinica, 2010, 26(09): 2437-2442.

URL:     OR

1. Sorokin, A.; Seris, J. L.; Meunier, B. Science, 1995, 268: 1163
2. Sorokin, A.; Meunier, B. Chemistry-A European Journal, 1996, 2 (10): 1308
3. Hadasch, A.; Sorokin, A.; Rabion, A.; Meunier, B. New Journal of Chemistry, 1998, 22(1): 45
4. Sorokin, A.; Meunier, B. European Journal of Inorganic Chemistry, 1998, (9): 1269
5. Hadasch, A.; Meunier, B. European Journal of Inorganic Chemistry, 1999, (12): 2319
6. Hequet, V.; Le Cloirec, P.; Gonzalez, C.; Meunier, B. Chemosphere, 2000, 41(3): 379
7. Tao, X. Study on photochemical degradation of organic pollutants and related reaction mechanism[D]. Beijing: Institute of Chemistry, Chinese Academy of Sciences, 2002 [陶霞. 有毒有机污染物 光催化降解及机理研究[D].北京:中国科学院化学研究所, 2002]
8. Hu, M. Q.; Xu, Y. M.; Zhao, J. C. Langmuir, 2004, 20(15): 6302
9. Liu, M.; Han, D. Z.; Deng, K. J.; Wang, D. Y. Chin J Catal., 2004, 25(10): 834 [刘敏,韩端壮, 邓克俭,王夺元.催化学报, 2004, 25(10): 834]
10. Wu, L.; Li, A. M.; Gao, G. D.; Fei, Z. H.; Xu, S. R.; Zhang, Q. X. J. Mol. Catal. A, 2007, 269(1-2): 183
11. Chen, W. X.; Chen, S. L.; Lü, S. S.; Yao, Y. Y.; Xu, M. H. Science in China S-ries BüChemistry, 2007, 37(4): 369 [陈文兴, 陈世良,吕慎水,姚玉元, 徐敏虹.中国科学B辑:化学, 2007, 37 (4): 369]
12. Xiong, Z. G.; Xu, Y. M.; Zhu, L. Z.; Zhao, J. C. Langmuir, 2005, 21(23): 10602
13. Xiong, Z. G.; Xu, Y. M.; Zhu, L. Z.; Zhao, J. C. Environ. Sci. Technol., 2005, 39(2): 651
14. Tao, X.; Ma, W. H.; Li, J.; Huang, Y. P.; Zhao, J. C.; Yu, J. C. Chemical Communications, 2003, (1): 80
15. Gao, G. D.; Chen, J. L.; Zheng, S. R.; Fei, Z. H.; Liu, F. Q.; Li, A. M.; Lu, X. G.; Zhang, Q. X. Chin. J. Catal., 2005, 26(7): 545 [高 冠道,陈金龙,郑寿荣, 费正皓,刘福强,李爱民, 鲁秀国, 张全兴. 催化学报, 2005, 26(7): 545]
16. Gao, G. D.; Chen, J. L.; Fei, Z. H.; Li, A. M.; Lu, J. D.; Long, C.; Zhang, Q. X. Acta Polym. Sin., 2006, (1) : 113 [高冠道,陈金龙, 费正皓,李爱民, 鲁俊东,龙超,张全兴.高分子学报, 2006, (1): 113]
17. Gao, G. D.; Zhang, A. Y.; Zhang, M.; Chen, J. L.; Zhang, Q. X. Chin. J. Catal., 2008, 29(5): 426 [高冠道, 张爱勇,张萌, 陈金龙,张全兴.催化学报, 2008, 29(5): 426
18. Gao, G. D.; Zhang, A. Y.; Zhang, M.; Chen, J. L.; Zhang, Q. X. Chin. J. Catal., 2008, 29(4): 397 [高冠道, 张爱勇,张萌,陈 金龙,张全兴.催化学报, 2008, 29(4): 397]
19. Tanev, P. T.; Pinnavaia, J. J. Science, 1995, 267: 865
20. Xu, R. R.; Pang, W. Q. Chemistry of zeolites and porous materials. Beijing: Science Press, 2004: 145 [徐如人, 庞文琴.分子筛与多 孔材料化学.北京:科学出版社, 2004: 145]
21. Liu, L.; Liu, H. J.; Zhao, Y. P.; Wang, Y. Q.; Duan, Y. Q.; Gao, G. D.; Ge, M.; Chen, W. Environ. Sci. Technol., 2008, 42(7): 2342
22. Tao, X.; Ma, W. H.; Zhang, T. Y.; Zhao, J. C. Chemistry-A European Journal, 2002, 8(6): 1321

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[2] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 590-601.
[3] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 399-406.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2072-2081.
[5] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2082-2091.
[6] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 80-102.
[7] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2185-2196.
[8] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2069-2076.
[9] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2077-2083.
[10] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1758-1764.
[11] ZHU Kai-Jian, YAO Wen-Qing, ZHU Yong-Fa. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1519-1526.
[12] WANG Yan-Juan, SUN Jia-Yao, FENG Rui-Jiang, ZHANG Jian. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 728-736.
[13] HU Li-Fang, HE Jie, LIU Yuan, ZHAO Yun-Lei, CHEN Kai. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Physico-Chimica Sinica, 2016, 32(3): 737-744.
[14] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 551-557.
[15] HE Rong-An, CAO Shao-Wen, YU Jia-Guo. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(12): 2841-2870.