Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (09): 2349-2353    DOI: 10.3866/PKU.WHXB20100913
Photogenerated Cathodic Protection Properties of a TiO2 Nanowire FilmPrepared by a Hydrothermal Method
ZHU Yan-Feng, DU Rong-Gui, LI Jing, QI Hai-Qing, LIN Chang-Jian
State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(1028KB) Export: BibTeX | EndNote (RIS)      


A TiO2 film was synthesized on the surface of a Ti substrate by a hydrothermal method, followed by acid treatment and calcination. The properties of the TiO2 film were characterized by scanning electron microscopy, X-ray diffraction, and ultraviolet-visible spectrophotometry. The photogenerated cathodic protection properties of the TiO2 film were investigated by electrochemical techniques. The corrosion performance of 403 stainless steel coupled to a TiO2 film photoanode in different solutions was evaluated by photogenerated potential and electrochemical impedance spectroscopy. The results showed that the TiO2 film was composed of many randomly-oriented anatase nanowires of about 10 nm in diameter. The TiO2 nanowire film prepared by the hydrothermal reaction at 150 ℃ for 6 h was used for the photogenerated cathodic protection of 403 stainless steel. When we coupled the steel in a 0.5 mol·L-1 NaCl solution to the TiO2 film photoanode in a mixed solution containing 0.3 mol·-1 Na2SO4 and 0.5 mol·L-1 HCOOH, its potential decreased by 545 mV. Additionally, the charge transfer resistance of the electrode reaction process for the coupled steel decreased considerably. The results also indicated that the HCOOH in the mixed solution improved the photogenerated cathodic protection of the TiO2 filmphotoanode.

Key wordsHydrothermal method      TiO2 nanowire film      Photogenerated cathodic protection      403 stainless steel     
Received: 16 April 2010      Published: 13 July 2010
MSC2000:  O646  

The project was supported by the National High Technology Research and Development Programof China (2009AA03Z327) and National Key Technology R&DProgramof China (2007BAB27B04).

Corresponding Authors: DU Rong-Gui     E-mail:
Cite this article:

ZHU Yan-Feng, DU Rong-Gui, LI Jing, QI Hai-Qing, LIN Chang-Jian. Photogenerated Cathodic Protection Properties of a TiO2 Nanowire FilmPrepared by a Hydrothermal Method. Acta Physico-Chimica Sinica, 2010, 26(09): 2349-2353.

URL:     OR

1. Srimala, S.; Roshanorlyza, H.; Zainovia, L. Thin Solid Films, 2009, 518(1-2): 16
2. Zhuang, H. F.; Lin, C. J.; Lai, Y. K.; Sun, L.; Li, J. Environ. Sci. Technol., 2007, 41(13): 4735
3. Chatterjee, D. Catal. Commun., 2010, 11(5): 336
4. Shaban, Y. A.; Khan, S. U. M. Int. J. Hydrogen. Energ., 2008, 33 (4): 1118
5. Lee, C. Y.; Hupp, J. T. Langmuir, 2010, 26(5): 3760
6. Wang, H. F.; Su,W. N.; Hwang, B. J. Electrochem. Commun., 2009, 11(8): 1647
7. Park, J. A.; Moon, J.; Lee, S. J. Kim, S. H.; Zyung, T.; Chu, H. Y. Mater. Lett., 2010, 64(3): 255
8. Seo, M. H.; Yussa, M.; Kida, T.; Huh, J. S. Shimanoe, K.; Yamazoe, N. Sensor. Actuat. B-Chem., 2009, 137(2): 513
9. Brammer, K. S.; Oh, S.; Cobb, C. J.; Bjursten, L. M.; van der Heyde, H.; Jin, S. Acta Biomater., 2009, 5(8): 3215
10. Peng, L.; Eltgroth, M. L.; LaTempa, T. J. Grimes, C. A.; Desai, T. A. Biomaterials, 2009, 30(7): 1268
11. Wen, C.; Zhu, Y. J.; Kanbara, T.; Zhu, H. Z.; Xiao, C. F. Desalination, 2009, 249(2): 621
12. Uchida, S.; Chiba,R.; Tomiba, M. Electrochemistry, 2002, 70(6): 418
13. Li, H. L.; Luo,W. L.; Chen, T. Acta Phys. -Chim. Sin., 2008, 24 (8): 1383 [李海龙, 罗武林,陈涛.物理化学学报, 2008, 24 (8): 1383]
14. Tatsuma, T.; Saitoh, S. Ohko, Y.; Fujishima, A. Chem. Mater., 2001, 13(9): 2838
15. Shen, G. X.; Chen, Y. C.; Lin, C. J. Thin Solid Films, 2005, 489 (1-2): 130
16. Shen, G. X.; Chen, Y. C.; Lin, L.; Lin, C. J. Electrochim. Acta, 2005, 50(25-26): 5083
17. Park, H.; Kim, K. Y.; Choi, W. Chem. Commun., 2001, (3): 281
18. Ohko, Y.; Saitoh, S.; Tatsuma, T.; Fujishima, A. J. Electrochen. Soc., 2001, 148(1): B24
19. Zhou, M. J.; Zeng, Z. O.; Zhong, L. Corrosion Sci., 2009, 51(6): 1386
20. Li, J.; Yun, H.; Lin, C. J. J. Electrochem. Soc., 2007, 154(11): C631
21. Dong, X.; Tao, J.; Li, Y. Y.;Wang, T.; Zhu, H. Acta Phys. -Chim. Sin., 2009, 25(9): 1874 [董祥,陶杰, 李莹滢,汪涛,朱 宏. 物理化学学报, 2009, 25(9): 1874]
22. Fujita, K.; Konishi, J.; Nakanishi, K. Sci. Technol. Adv. Mater., 2006, 7(6): 511
23 Park, H.; Kim, K. Y.; Choi, W. J. Phys. Chem. B, 2002, 106(18): 4775
24 Leng, W. H.; Liu, D. P.; Cheng, X. F.; Zhu,W. C.; Zhang, J. Q.; Cao, C. N. Acta Metall. Sin., 2007, 43(7): 764 [冷文华, 刘东坡, 程小芳,朱文彩, 张鉴清,曹楚南.金属学报, 2007, 43(7): 764]

[1] LIU Changjiang, MA Hongwen, ZHANG Pan. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinica, 2018, 34(2): 168-176.
[2] ZHUANG Jian-Dong, TIAN Qin-Fen, LIU Ping. Bi2Sn2O7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Physico-Chimica Sinica, 2016, 32(2): 551-557.
[3] HU Hai-Feng, HE Tao. Controlled Aspect Ratio Modulation of ZnO Nanorods via Indium Doping[J]. Acta Physico-Chimica Sinica, 2015, 31(7): 1421-1429.
[4] CHEN Yang, ZHANG Zi-Lan, SUI Zhi-Jun, LIU Zhi-Ting, ZHOU Jing-Hong, ZHOU Xing-Gui. Preparation and Electrochemical Performance of Ni(OH)2 Nanowires/ Three-Dimensional Graphene Composite Materials[J]. Acta Physico-Chimica Sinica, 2015, 31(6): 1105-1112.
[5] LI Xiang-Qi, FAN Qing-Fei, LI Guang-Li, HUANG Yao-Han, GAO Zhao, FAN Xi-Mei, ZHANG Chao-Liang, ZHOU Zuo-Wan. Syntheses of ZnO Nano-Arrays and Spike-Shaped CuO/ZnO Heterostructure[J]. Acta Physico-Chimica Sinica, 2015, 31(4): 783-792.
[6] ZHANG Yuan-Hang, WANG Zhi-Yuan, SHI Chun-Sheng, LIU En-Zuo, HE Chun-Nian, ZHAO Nai-Qin. Synthesis of Uniform Nickel Oxide Nanoparticles Embedded in Porous Hard Carbon Spheres and Their Application in High Performance Li-Ion Battery Anode Materials[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 268-276.
[7] QI Qi, WANG Yu-Qiao, WANG Sha-Sha, QI Hao-Nan, WEI Tao, SUN Yue-Ming. Preparation of Reduced Graphene Oxide/TiO2 Nanocomposites and Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, 2015, 31(12): 2332-2340.
[8] YU Hua-Feng, ZHANG Guo-Pei, HAN Li-Na, CHANG Li-Ping, BAO Wei-Ren, WANG Jian-Cheng. Cu-SSZ-13 Catalyst Synthesized under Microwave Irradiation and Its Performance in Catalytic Removal of NOx from Vehicle Exhaust[J]. Acta Physico-Chimica Sinica, 2015, 31(11): 2165-2173.
[9] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, 2015, 31(1): 153-158.
[10] WANG Jian-De, PENG Tong-Jiang, XIAN Hai-Yang, SUN Hong-Juan. Preparation and Supercapacitive Performance of Three-Dimensional Reduced Graphene Oxide/Polyaniline Composite[J]. Acta Physico-Chimica Sinica, 2015, 31(1): 90-98.
[11] LI Qing-Zhou, LI Yu-Hui, LI Ya-Juan, LIU You-Nian. One-Step Hydrothermal Preparation and Electrochemical Performance of Graphene/Sulfur Cathode Composites[J]. Acta Physico-Chimica Sinica, 2014, 30(8): 1474-1480.
[12] WANG Jian-De, PENG Tong-Jiang, SUN Hong-Juan, HOU Yun-Dan. Effect of the Hydrothermal Reaction Temperature on Three-Dimensional Reduced Graphene Oxide's Appearance, Structure and Super Capacitor Performance[J]. Acta Physico-Chimica Sinica, 2014, 30(11): 2077-2084.
[13] TANG Jia-Yong, CAO Pei-Qi, FU Yan-Bao, LI Peng-Hui, MA Xiao-Hua. Synthesis of a Mesoporous Manganese Dioxide-Graphene Composite by a Simple Template-Free Strategy for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinica, 2014, 30(10): 1876-1882.
[14] ZHAO Ning-Ning, HE Cui-Cui, LIU Jian-Bing, MA Hai-Xia, AN Ting, ZHAO Feng-Qi, HU Rong-Zu. Preparation and Characterization of Superthermite Al/Fe2O3 and Its Effect on Thermal Decomposition of Cyclotrimethylene Trinitramine[J]. Acta Physico-Chimica Sinica, 2013, 29(12): 2498-2504.
[15] ZHAO Wei-Rong, XI Hai-Ping, LIAO Qiu-Wen. Cu-Doped Titania Nanotubes for Visible-Light Photocatalytic Mineralization of Toluene[J]. Acta Physico-Chimica Sinica, 2013, 29(10): 2232-2238.