Please wait a minute...
Acta Phys. -Chim. Sin.  2010, Vol. 26 Issue (11): 3002-3008    DOI: 10.3866/PKU.WHXB20101010
Cataluminescence Performance on Catalysts of Graphene Supported Platinum
WU Xiao-Qin1,2, ZONG Rui-Long1, MU Hao-Jie1, ZHU Yong-Fa1
1. Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China;
2. College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
Download:   PDF(1991KB) Export: BibTeX | EndNote (RIS)      

Platinum nanoparticles supported by graphene were prepared by the colloid deposition process. The effects of particle size and loading amount of platinum particles on the cataluminescence (CTL) properties of CO have been investigated. The CTL properties and some analysis characteristics of the catalyst on other gas phase systems were explored. The results show that the Pt nanoparticles are well distributed on graphene and a faster catalytic reaction rate is apparent. The smaller particles lead to a higher CTL intensity. When the volume concentration of CO in air is below 40% (φ, volume fraction) the CTL intensity is proportional to the concentration of CO for all the catalysts (0.4%-1.6% (w, mass fraction) Pt). Among them, the catalyst containing 0.8% Pt was found to be the best. However, by increasing the CO concentration the CTL intensity of the catalysts with a low Pt loading (0.4%, 0.8%) decreased while the highly loaded (1.2%, 1.6%) catalysts continued to increase their intensity. Moreover, a higher Pt loading led to a higher CTL intensity. Under certain conditions the catalyst shows good CTL performance for CO oxidation, and ether, methanol as well as toluene show different degrees of response. No response was obtained for carbon dioxide, formaldehyde, glutaraldehyde, acetone, ethyl acetate, chloroform, and water vapor.


Key wordsGraphene      Pt nanoparticles      Cataluminescence      Carbon monoxide      Platinumloading     
Received: 04 June 2010      Published: 27 August 2010
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (20925725) and National Key Basic Research Program of China (973) (2007CB613303).

Corresponding Authors: ZHU Yong-Fa     E-mail:
Cite this article:

WU Xiao-Qin, ZONG Rui-Long, MU Hao-Jie, ZHU Yong-Fa. Cataluminescence Performance on Catalysts of Graphene Supported Platinum. Acta Phys. -Chim. Sin., 2010, 26(11): 3002-3008.

URL:     OR

1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science, 2004, 306: 666
2. Geim, A. K.; Novoselov, K. S. Nature Materials, 2007, 6: 183
3. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Nat. Nanotechnol., 2008, 3: 101
4. Shan, C. S.; Yang, H. F.; Song, J. F.; Han, D. X.; Ivaska, A.; Niu, L. Anal. Chem., 2009, 81: 2378
5. Kang, X. H.; Wang, J.; Wu, H.; Aksay, I. A.; Liu, J.; Lin, Y. H. Biosensors and Bioelectronics, 2009, 25: 901
6. Wu, H.; Wang, J.; Kang, X. H.;Wang, C. M.; Wang, D. H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Talanta, 2009, 80: 403
7. Li, H. J.; Chen, J. A.; Han, S.; Niu, W. X.; Liu, X. Q.; Xu, G. B. Talanta, 2009, 79: 165
8. Breysse, M.; Claudel, B.; Faure, L.; Guenin, M.; Williams, R. J. J.; Wolkenstein. T. J. Catal., 1976, 45: 137
9. Zhu, Y. F.; Shi, J. J.; Zhang, Z. Y.; Zhang, C.; Zhang, X. R. Anal. Chem., 2002, 74: 120
10. Zhou, Q.; Zhang, L.C.; Fan, H. Y.; Wu, L.; Lv, Y. Sensors and Actuators B, 2010, 144: 192
11. Cao, X. A.; Zhang, Z. Y.; Zhang, X. R. Sensors and Actuators B, 2004, 99: 30
12. Shi, J. J.; Yan, R. X.; Zhu, Y. F.; Zhang, X. R. Talanta, 2003, 6: 157
13. Zhang, Z. Y.; Jiang, H. J.; Xing, Z.; Zhang, X. R. Sensors and Actuators B, 2004, 102: 155
14. Xuan, Y. L.; Hu, J.; Xu, K. L.; Hou, X. D.; Lv, Y. Sensors and Actuators B, 2009, 136: 218
15. Luo, L.; Chen, H.; Zhang, L. C.; Xu, K. L.; Lv, Y. Anal. Chim. Acta, 2009, 635: 183
16. Jia, Y. Z.; Zhang, H. L.; Wu, L.; Lv, Y.; Hou, X. D. Microchemical Journal, 2010, 95: 359
17. Cao, X. A.; Wu,W. F.; Chen, N.; Peng, Y.; Liu, Y. H. Sensors and Actuators B, 2009, 137: 83
18. Wu, C. C.; Cao, X. A.; Wen, Q.; Wang, Z. H.; Gao, Q. Q.; Zhu, H. C. Talanta, 2009, 79: 1223
19. Lu, J. S.; Cao, X. A.; Pan, C. Y.; Yang, L. F.; Lai, G. B.; Chen, J. L.;Wu, C. Q. Sensors, 2006, 6: 1827
20. Yu, C.; Liu, G. H.; Zuo, B. L.; Tang, Y. J.; Zhang, T. Anal. Chim. Acta, 2008, 618: 204
21. Yang, P.; Ye, X. N.; Lau, C. W.; Li, Z. X.; Liu, X.; Lu, J. Z. Anal. Chem., 2007, 79: 1425
22. Li, S. F.; Li, F. P.; Rao, Z. M. Sensors and Actuators B, 2010, 145: 78
23. Wang, X.; Na, N.; Zhang, S. C.; Wu, Y. Y.; Zhang, X. R. J. Am. Chem. Soc., 2007, 129: 6062
24. Teng, F.; Xu, T. G.; Teng, Y.; Liang, S. H.; Bulgan, G.; Lin, J.; Yao,W. Q.; Zong, R. L.; Zhu, Y. F.; Zheng, T. F. Environ. Sci. Technol., 2008, 42: 3886
25. Bulgen, G.; Liang, S. H.; Teng, F.; Yao, W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin., 2008, 24: 205 [Bulgen G.,梁淑惠,腾飞, 姚文清,朱永法. 物理化学学报, 2008, 24: 205]
26. Teng, F.; Yao, W. Q.; Zhu, Y. F.; Chen, M. D.; Wang, R. H.; Mho, S. I.; Meng, D. D. J. Phys. Chem. C, 2009, 113: 3089
27. Na, N.; Zhang, S. C.; Wang, X.; Zhang, X. R. Anal. Chem., 2009, 81: 2092
28. Wu, Y. Y.; Na, N.; Zhang, S. C.; Wang, X.; Liu, D.; Zhang, X. R. Anal. Chem., 2009, 81: 961
29. Suslick, B. A.; Feng, L.; Suslick, K. S. Anal. Chem., 2010, 82: 2067
30. Comotti, M.; Li, W. C.; Spliethoff, B.; Schüth, F. J. Am. Chem. Soc., 2006, 128: 917
31. Bulgan, G.; Zong, R. L.; Liang, S. H.; Yao, W. Q.; Zhu, Y. F. Acta Phys. -Chim. Sin., 2008, 24: 1547 [Bulgan G.,宗瑞隆, 梁淑惠, 姚文清,朱永法. 物理化学学报, 2008, 24: 1547]
32. Ummers, W. S.; Offeman, R. E. J. Am. Chem. Soc., 1958, 80: 1339
33. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc., 2008, 130: 5856
34. Alwarappan, S.; Erdem, A.; Liu, C.; Li, C. Z. J. Phys. Chem. C, 2009, 113: 8853
35. Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; Brink, J. V. D.; Kelly, P. J. Phys. Rev. B, 2009, 79: 195425
36. Wang, Q. J.; Che, J. G. Phys. Rev. Lett., 2009, 103: 066802
37. Arenz, M.; Mayrhofer, K. J. J.; Stamenkovic, V.; Blizanac, B. B.; Tomoyuki, T.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc., 2005, 127: 6819
38. Valden, M.; Lai, X.; Goodman, D. W. Science, 1998, 281: 1647
39. Che, M.; Bennett, C. O. Adv. Catal., 1989, 36: 55
40. Teng, F.; Yao,W. Q.; Zheng, Y. F.; Ma, Y. T.; Xu, T. G.; Gao, G. Z.; Liang, S. H.; Teng, Y.; Zhu, Y. F. Talanta, 2008, 76: 1058
41. Campell, C.; Ertl, G.; Kuipers, H.; Segner, J. J. Chem. Phys., 1980, 73: 5862
42. Wang, G. X.; Yang, J.; Park, J.; Gou, X. L.; Wang, B.; Liu, B.; Yao, J. J. Phys. Chem. C, 2008, 112: 8192

[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[2] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[3] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[4] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[5] Zhi-Dan FU,Jia-Xin ZANG,Qing YE,Shui-Yuan CHENG,Tian-Fang KANG. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1855-1864.
[6] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[7] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[8] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[9] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[10] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[11] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 573-581.
[12] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[13] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.
[14] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[15] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2542-2549.