Please wait a minute...
Acta Phys. -Chim. Sin.  2010, Vol. 26 Issue (10): 2679-2685    DOI: 10.3866/PKU.WHXB20101013
CATALYSIS AND SURFACE STRUCTURE     
NOx Molecule Adsorption in [Ag]-MAPO-5 (M=Si, Ti)Molecular Sieves
LIU Jie-Xiang1, ZHANG Xiao-Guang2, DUAN Zhong-Yu1, LIU Xiao-Li1
1. School of Chemical Engineering, Hebei University of Technology, Tianjin 300130, P. R. China;
2. College of Chemistry, Nankai University, Tianjin 300071, P. R. China
Download:   PDF(632KB) Export: BibTeX | EndNote (RIS)      

Abstract  

NOx adsorption in silver-exchanged aluminophosphate molecular sieves ([Ag]-SAPO-5 and [Ag]-TAPO-5) was investigated using the density functional theory (DFT). Equilibrium structure parameters and adsorption energies were obtained and compared. The results indicated that the η1-N mode was more stable than the η1-O mode. The adsorption energy values of NOx followed the order: NO2>NO>N2O. Compared to the free gas state, the bond parameters of NO and NO2 in the adsorbed state changed more than that of N2O in [Ag]-SAPO-5 and [Ag]-TAPO-5. Moreover, [Ag]-SAPO-5 and [Ag]-TAPO-5 had a higher activation for the NOx molecule compared to [Ag]-AlMOR. The resistance capabilities of [Ag]-SAPO-5 and [Ag]-TAPO-5 to SO2,H2O, and O2 were also studied and analyzed. In addition, the interaction mechanism of NOx in silver-exchanged aluminophosphate molecular sieves was investigated using natural bond orbital (NBO) analysis.



Key wordsNitrogen oxide      Aluminophosphate molecular sieves      Silver      Adsorption      Density functional theory     
Received: 20 April 2010      Published: 27 September 2010
MSC2000:  O643  
Fund:  

The project was supported by the Science and Technology Project of Hebei Province, China (06215124) and Natural Science Foundation of Tianjin, China (08JCYBJC00700).

Corresponding Authors: LIU Jie-Xiang     E-mail: jxliu@hebut.edu.cn
Cite this article:

LIU Jie-Xiang, ZHANG Xiao-Guang, DUAN Zhong-Yu, LIU Xiao-Li. NOx Molecule Adsorption in [Ag]-MAPO-5 (M=Si, Ti)Molecular Sieves. Acta Phys. -Chim. Sin., 2010, 26(10): 2679-2685.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20101013     OR     http://www.whxb.pku.edu.cn/Y2010/V26/I10/2679

1. Iwamoto, M.; Furukawa, H.; Kagawa, S. Newdevelopments in zeolite science and technology. Amsterdam: Elsevier, 1986: 943
2. Sun, Y. M.; Yang, P.; Cao, A. N.; Zhang, Y. Acta Phys.-Chim. Sin., 2001, 17(8): 761 [孙岳明,杨萍,曹爱年,张远援物理 化学学报, 2001, 17(8): 761]
3. Feng, X. B.; Keith, H. W. J. Catal., 1997, 166: 368
4. Iwamoto, M.; Yahiro, H.; Shin, H. K.; Watanabe, M.; Guo, J.W.; Konno, M.; Chikahisa, T.; Murayama, T. Appl. Catal. B-Environ., 1994, 5: L1
5. Bethke, K. A.; Kung, H. H. J. Catal., 1997, 172: 93
6. Shimizu, K. A.; Hattori, T. Appl. Catal. B-Environ., 2000, 25: 239
7. Shi, C.; Cheng, M. J.; Qu, Z. P.; Yang, X. F.; Bao. X. H. Chem. J. Chin. Univ., 2003, 23(4): 628 [石川,程谟杰, 曲振平,杨学 锋,包信和.高等学校化学学报, 2003, 23(4): 628]
8. Li, Z.; Flytzani-Stephanopoulos, M. J. Catal., 1999, 182: 313
9. Masuda, K.; Shinodab, K.; Katob, T.; Tsujimura, K. Appl. Catal. B- Environ., 1998, 15: 29
10. Akolekar, D. B.; Bhargava, S. K. J. Mol. Catal. A-Chem., 2000, 157: 199
11. Kurshev,V.; Kevan, L.; Parillo, D. J.; Pereira, C.; Kokotailo, G. T.; Gorte, R. J. J. Phys. Chem., 1994, 98: 10160
12. Campelo, J. M.; Garcia, A; Luna, D.; Marinas, J. M.; Martinez, M. I. Mater. Chem. Phys., 1989, 21: 409
13. Dědecek, J.; Cejka, J.; Wichterlová, B. Appl. Catal. B-Environ., 1998, 15: 233
14. Frache, A.; Palella, B.; Cadoni, M.; Pirone, R.; Ciambelli, P.; Pastore, H. O.; Marchese, L. Catal. Today, 2002, 75: 359
15. Panayotov, D.; Dimitrov, L.; Khristova, M.; Petrov, L.; Mehandjiev, D. Appl. Catal. B-Environ., 1995, 6: 61
16. Elanany, M.; Vercauteren, D. P.; Kubo, M.; Miyamoto, A. J. Mol. Catal. A-Chem., 2006, 248: 181
17. Liu, J. X.;Wei, X.; Zhang, X. G.; Han, E. S. Acta Phys.-Chim. Sin., 2009, 25(10): 2123 [刘洁翔, 魏贤,张晓光,韩恩山. 物理化学学报, 2009, 25(10): 2123]
18. Liu, J. X.;Wei, X.; Zhang, X. G.; Wang, G. X.; Han, E. S.; Wang, J. G. Acta Phys.-Chim. Sin., 2009, 25(1): 91 [刘洁翔,魏贤, 张晓光, 王桂香,韩恩山,王建国.物理化学学报, 2009, 25(1): 91]
19. Jiang, N.; Yuan, S. P.; Qin, Z. F.; Wang, J. G.; Jiao, H. J., Li ,Y. W. Chinese Journal of Catalysis, 2001, 25(10): 779 [蒋南,袁淑 萍,秦张峰,王建国, 焦海军, 李永旺援催化学报, 2001, 25(10): 779]
20. Uzunova, E. L.; Göltl, F.; Kresse, G.; Hafner, J. J. Phys. Chem. C, 2009, 113: 5274
21. Material Studio, Version 2.2.1. San Diego: Accehys Inc., 2002
22. Becke, A. D. J. Chem. Phys., 1988, 88: 2547
23. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B-Solid State, 1988, 37: 785
24. Bergner, A.; Dolg, M.; Kuechle,W.; Stoll, H.; Preuss, H. Mol. Phys., 1993, 80: 1431
25. Zhou, D. H.; He, N.; Wang, Y. Q.; Yang, G.; Liu, X. C.; Bao, X. H. J. Mol. Struct.-Theochem, 2005, 756: 39
26. Zhou, D. H.; Wang, Y. Q.; He, N.; Yang, G. Acta Phys.-Chim. Sin., 2006, 22(5): 512 [周丹红,王玉清,贺宁,杨刚. 物理化学 学报, 2006, 22(5): 512]
27. Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; et al. Gaussian 03, Revision B.04, NBOVersion 3.1. Pittsburgh, PA: Gaussian Inc., 2005
28. Zhanpeisov, N. U.; Martra, G.; Ju, W. S.; Matsuoka, M.; Coluccia, S.; Anpo, M. J. Mol. Catal. A-Chem., 2003, 201: 237
29. Zhang, T.; Ren, L. L.; Lin, L. W. Chinese Journal of Catalysis, 2004, 25(1): 75 [张涛, 任丽丽,林励吾援催化学报, 2004, 25 (1): 75]

[1] GU Yuxing, YANG Juan, WANG Dihua. Electrochemical Features of Carbon Prepared by Molten Salt Electro-reduction of CO2[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 208-214.
[2] An XIE,Zhi WANG,Qiaoyu WU,Liping CHENG,Genggeng LUO,Di SUN. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri = 4-t-isopropylthiophenol, and dppp = 1, 3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 776-780.
[3] Chiaki TOMINAGA,Dailo HIKOSOU,Issey OSAKA,Hideya KAWASAK. Ag7(MBISA)6 Nanoclusters Conjugated with Quinacrine for FRET-Enhanced Photodynamic Activity under Visible Light Irradiation[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 805-811.
[4] Paul W. AYERS,Mel LEVY. Levy Constrained Search in Fock Space: An Alternative Approach to Noninteger Electron Number[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 625-630.
[5] Martínez GONZÁLEZ Marco,Carlos CÁRDENAS,Juan I. RODRÍGUEZ,Shubin LIU,Farnaz HEIDAR-ZADEH,Ramón Alain MIRANDA-QUINTANA,Paul W. AYERS. Quantitative Electrophilicity Measures[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 662-674.
[6] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 503-513.
[7] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 514-518.
[8] Jyotirmoy DEB,Debolina PAUL,David PEGU,Utpal SARKAR. Adsorption of Hydrazoic Acid on Pristine Graphyne Sheet: A Computational Study[J]. Acta Phys. -Chim. Sin., 2018, 34(5): 537-542.
[9] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 270-277.
[10] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 256-262.
[11] Xuanjun WU,Lei LI,Liang PENG,Yetong WANG,Weiquan CAI. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 286-295.
[12] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 263-269.
[13] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Phys. -Chim. Sin., 2018, 34(3): 303-313.
[14] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[15] Yuan DUAN,Mingshu CHEN,Huilin WAN. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1358-1365.