Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (10): 2726-2732    DOI: 10.3866/PKU.WHXB20101023
Preparation, Characterization and Photocatalytic Property of p-CoO/n-CdS Compound Semiconductor Photocatalyst
DU Huan1, WANG Sheng2, LIU Lian-Lian1, LIU Zhong-Xiang1, LI Zhen1, LU Nan1, LIU Fu-Sheng1
1. Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China;
2. College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, P. R. China
Download:   PDF(2630KB) Export: BibTeX | EndNote (RIS)      


The photocatalysts CdS and p-n coupled semiconductor photocatalysts CoO/CdS(p-CoO/n-CdS) were prepared using cadmium acetate, lauryl mercaptan, cobalt acetate, and stearic acid by a new method. The structural and optical properties of CdS and p-CoO/n-CdS were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM),N2 adsorption -desorption, and ultraviolet -visible diffuse reflection spectroscopy (UV-Vis DRS). The results showed that the particles of CoO compactly connected with the particles of CdS in the p-CoO/n-CdS. The particle size of CdS was about 100 nm and the crystalloid of CdS was hexagon spiauterite. The particle size of CoO was about 10 nm, and the distribution of particles size was uniform. The results of UV-Vis DRS showed that the nano-CdS particles could absorb the visible light at wavelengths between 400 and 550 nm which is characteristic absorption of CdS in the visible region. The photocatalytic activity of the photocatalyst was evaluated by photocatalytic degradation of methyl orange (MO). The results showed that the photocatalytic activity of p-CoO/n-CdS was much higher, which was 2.2 times than that of CdS on the photocatalytic degradation of methyl orange. The results of photocorrosion test showed that the photocorrosion rate of CdS was two or more times than that of p-CoO/n-CdS, which indicated that CoO coupled with CdS could effectively restrain the photocorrosion of CdS.

Key wordsPhotocatalysis      p-n coupled semiconductor      CoO      CdS      Characterization     
Received: 17 May 2010      Published: 27 September 2010
MSC2000:  O643  

The project was supported by the National Natural Science Foundation of China (50876047).

Corresponding Authors: LIU Fu-Sheng     E-mail:
Cite this article:

DU Huan, WANG Sheng, LIU Lian-Lian, LIU Zhong-Xiang, LI Zhen, LU Nan, LIU Fu-Sheng. Preparation, Characterization and Photocatalytic Property of p-CoO/n-CdS Compound Semiconductor Photocatalyst. Acta Physico-Chimica Sinica, 2010, 26(10): 2726-2732.

URL:     OR

1. Fujishima, A.; Honda, K. Nature, 1972, 238: 37
2. Khaselev, O.; Turner, J. A. Science, 1998, 280: 425
3. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Science, 2001, 293: 269
4. Zou, Z. G.; Ye, J.; Sayama, K.; Arakawa, H. Nature, 2001, 414: 625
5. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Science, 2002, 297: 2243
6. Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature, 2006, 440: 295
7. Fox, M. A.; Dulay, M. T. Chem. Rev., 1993, 93: 341
8. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev., 1995, 95: 69
9. Chen, D.W.; Liu, Y. Q.; Yi, X. J.; Xu, G. Z. Acta Phys. -Chim. Sin., 2001, 17(9): 781 [陈德文,刘延秋,易筱筠, 徐广智.物理 化学学报, 2001, 17(9): 781]
10. Dhere, N. G.; Jahagirdar, A. H. Thin Solid Films, 2005, 480-481: 462
11. Peng, F.; Chen, S. H.; Zhang, L.; Wang, H. J.; Xie, Z. Y. Acta Phys.- Chim. Sin., 2005, 21(9): 944 [彭峰, 陈水辉,张雷,王红娟, 谢志勇.物理化学学报, 2005, 21(9): 944]
12. Gondal, M. A.; Hameed, A.; Yamani, Z. H.; Suwaiyan, A. Appl. Catal. A-Gen., 2004, 268: 159
13. Wang, G. Y.;Wang, Y. J.; Zhao, X. Q.; Song, B. J. Acta Phys.- Chim. Sin., 2005, 21(l): 84 [王桂赟,王延吉,赵新强, 宋宝俊. 物理化学学报, 2005, 21(l): 84]
14. Fang, S. M.; Ou, Y.; Lin, J. D.; Liao, D. W. Acta Phys. -Chim. Sin., 2007, 23(4): 601 [方舒玫, 欧延,林敬东,廖代伟. 物理化学 学报, 2007, 23(4): 601]
15. Datta, A.; Priyam, A.; Bhattacharyya, S. N.; Mukherjea, K. K.; Saha, A. J. Colloid Interface Sci., 2008, 322: 128
16. Jang, J. S.; Ham, D. J.; Lakshminarasimhan, N.; Choi, W. Y.; Lee, S. J. Appl. Catal. A-Gen., 2008, 346: 149.
17. Ma, G. J.; Yan, H. J.; Shi, J. Y.; Zong, X.; Lei, Z. B.; Li, C. J. Catal., 2008, 260: 134
18. Ranjit, K. T.; Viswanathan, B. J. Photochem. Photobiol. A, 2003, 154: 299
19. El Zayat, M. Y.; Saed, A. O.; El-Dessouki, M. S. Sol. Energy Mater. Sol. Cells, 2002, 71: 27
20. Yamada, S.; Nosaka, A. Y.; Nosaka, Y. J. Electroanal. Chem., 2005, 585: 105
21. Zhang, Y. J.; Zhang, L. Appl. Surf. Sci., 2009, 255: 4863

[1] CHENG Ruo-Lin, JIN Xi-Xiong, FAN Xiang-Qian, WANG Min, TIAN Jian-Jian, ZHANG Ling-Xia, SHI Jian-Lin. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1436-1445.
[2] HUANG Xue-Hui, SHANG Xiao-Hui, NIU Peng-Ju. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1462-1473.
[3] HU Hai-Long, WANG Sheng, HOU Mei-Shun, LIU Fu-Sheng, WANG Tian-Zhen, LI Tian-Long, DONG Qian-Qian, ZHANG Xin. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 590-601.
[4] GAO Xiao-Ping, GUO Zhang-Long, ZHOU Ya-Nan, JING Fang-Li, CHU Wei. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene[J]. Acta Physico-Chimica Sinica, 2017, 33(3): 602-610.
[5] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 270-282.
[6] XIAO Ming, HUANG Zai-Yin, TANG Huan-Feng, LU Sang-Ting, LIU Chao. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 399-406.
[7] ZHU Jin-Xiao, LIU Xiao-Dong, XUE Min-Zhao, CHEN Chang-Xin. Phosphorene: Synthesis, Structure, Properties and Device Applications[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2153-2172.
[8] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2072-2081.
[9] CHEN Yang, YANG Xiao-Yan, ZHANG Peng, LIU Dao-Sheng, GUI Jian-Zhou, PENG Hai-Long, LIU Dan. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2082-2091.
[10] QIU Wei-Tao, HUANG Yong-Chao, WANG Zi-Long, XIAO Shuang, JI Hong-Bing, TONG Ye-Xiang. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinica, 2017, 33(1): 80-102.
[11] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinica, 2016, 32(9): 2185-2196.
[12] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2069-2076.
[13] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 2077-2083.
[14] LUO Bang-De, XIONG Xian-Qiang, XU Yi-Ming. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1758-1764.
[15] JIA Xiao-Fang, ZHANG Cong-Jie. A Theoretical Investigation of the Rearrangement Reaction of Allylic Acetates Catalyzed by Au(I) Complexes with PtC[J]. Acta Physico-Chimica Sinica, 2016, 32(6): 1434-1438.