Please wait a minute...
Acta Physico-Chimica Sinica  2010, Vol. 26 Issue (11): 2927-2934    DOI: 10.3866/PKU.WHXB20101113
Preparation and Photoeletrochemical Performance of CdS Quantum Dot Sensitized ZnO Nanorod Array Electrodes
ZHANG Qiao-Bao2, FENG Zeng-Fang2, HAN Nan-Nan2, LIN Ling-Ling2, ZHOU Jian-Zhang1,2, LIN Zhong-Hua1,2
1. State Key Laboratory of Physical Chemistry of the Solid Surface, Xiamen University, Xiamen 361005, Fujian Province, P. R. China;
2. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download:   PDF(2014KB) Export: BibTeX | EndNote (RIS)      

We sensitized CdS quantum dots on a ZnO nanorod array electrode by the successive ionic layer adsorption and reaction method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) experiments were performed to characterize the morphology, crystalline phase, and grain size of the CdS quantum dot sensitized ZnO nanorod array electrodes. The effect of CdS deposition cycle number and the precursor concentration were studied by photocurrent-potential characteristics and photocurrent spectra. The results showed that the best photoelectrochemical performance was obtained at 0.1 mol·L-1 for both Cd2+ and S2- after 15 cycles. Meanwhile, the composite films exhibited a remarkably enhanced photoelectric conversion efficiency compared with the ZnO nanorods array films and with CdS quantum dot electrodes. The monochromatic incident photon-to- electron conversion efficiency (IPCE) was as high as 76% at 380 nm. This may be attributed to the broad light harvesting capability of CdS and the efficient separation of photogenerated carriers on its interface. The reason for this enhancement was further confirmed by a photoluminescent experiment. The results showed that sensitization with CdS quantumdots reduced the recombination of electron and hole pairs resulting in an enhancement in the photocurrent.


Key wordsZnO nanorod array      CdS quantum dots      CdS quantumdots/ZnO nanorods      Successive ionic layer adsorption and reaction method      Photoelectrochemical performance     
Received: 17 May 2010      Published: 21 September 2010
MSC2000:  O646  

The project was supported by the National Natural Science Foundation of China (20433040).

Corresponding Authors: ZHOU Jian-Zhang     E-mail:
Cite this article:

ZHANG Qiao-Bao, FENG Zeng-Fang, HAN Nan-Nan, LIN Ling-Ling, ZHOU Jian-Zhang, LIN Zhong-Hua. Preparation and Photoeletrochemical Performance of CdS Quantum Dot Sensitized ZnO Nanorod Array Electrodes. Acta Physico-Chimica Sinica, 2010, 26(11): 2927-2934.

URL:     OR

1. Wang, Z. L. Materials Science and Engineering R, 2009, 64: 33
2. Zhang, Q. F.; Dandeneau, C. S.; Zhou, X. Y.; Cao, G. Z. Adv. Mater., 2009, 21: 4087
3. Ganesh, T.; Mane, R. S.; Cai, G.; Chang, J. H.; Han, S. H. J. Phys. Chem. C, 2009, 113: 7666
4. Shen, Q.; Kobayashi, J.; Diguna, L. J.; Toyoda, T. J. Appl. Phys., 2008, 103: 084304
5. Prashant, V. K. J. Phys. Chem. C, 2008, 112: 18737
6. Kurtis, S.; Leschkies, R. D.; Joysurya, B.; Emil, E. P.; Janice, E. B.; Barry, C.; Uwe, R. K.; David, J. N.; Eray, S. A. Nano Lett., 2007, 7: 1793
7. Song, B.; Cheng, K.; Wu, C.; Du, Z. L. Chinese Journal of Materials Research, 2009, 23: 89 [宋冰, 程柯,武超, 杜祖亮.材料研究学报, 2009, 23: 89]
8. Sun, W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc., 2008, 130: 1124
9. Baker, D. R.; Kamat, P. V. Adv. Funct. Mater., 2009, 19: 805
10. Tak, Y. J.; Hong, S. J.; Lee, J. S.; Yong, K. Journal of Crystal Growth & Design, 2009, 9: 2627
11. Zhang, Y.; Xie, T. F.; Jiang, T. F.; Wei, X.; Pang, S.; Wang, X.; Wang, D. J. Nanotechnology, 2009, 20: 155707
12. Spoerke, E. D.; Lloyd, M. T.; Lee, Y. J.; Lambert, T. N.; McKenzie, B. B.; Jiang, Y. B.; Olson, D. C.; Sounart, T. L.; Hsu, J. W. P.; Voigt, J. A. J. Phys. Chem. C, 2009, 113: 16329
13. Lee,W. J.; Min, S. K.; Dhas, V.; Ogale, S. B.; Han, S. H. Electrochem. Commun., 2009, 11: 103
14. Lee, H. J.; Leventis, H. C.; Moon, S. J.; Chen, P.; Ito, S.; Haque, S. A.; Torres, T.; Nüesch, F.; Geiger, T.; Zakeeruddin, S. M.; Grätzel, M.; Nazeeruddin, M. K. Adv. Funct. Mater., 2009, 19: 1
15. Song, X.; Fu, X. S.; Xie, Y.; Song, J. G.; Wang, H. L.; Sun, J.; Du, X. W. Semicond. Sci. Technol., 2010, 25: 045031
16. Guo, H. H.; Lin, Z. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z. J. Phys. Chem. C, 2009, 113: 12546
17. Feng, Z. F.; Zhang, Q. B.; Lin, L. L.; Guo, H. H.; Zhou, J. Z.; Lin, Z. H. Chem. Mater., 2010, 22: 2705
18. Mei, Z. X.; Zhang, X. Q.; Wang, Z. J.; Wang, J.; Li, Q. F.; Xu, S. R Spectroscopy and Spectral Analysis, 2003, 23: 461 [梅增霞, 张希青,王志坚, 王晶,李庆福,徐叙容. 光谱学与光谱分析, 2003, 23: 461]
19. O'Regan, B.; Grätzel, M. Nature, 1991, 335: 737
20. Grätzel, M. Chem. Lett., 2005, 34: 8
21. Shan, F. K.; Liu, G. X.; Lee, W. J.; Lee, G. H.; Kim, I. S.; Shin, B. C. Appl. Phys. Lett., 2005, 86: 221910
22. Xi, Y. Y.; Zhou, J. Z.; Guo, H. H.; Cai, C. D.; Lin, Z. H. Chem. Phys. Lett., 2005, 412: 60
23. Zhang, Q. B.; Guo, H. H.; Feng, Z. F.; Lin, L. L.; Zhou, J. Z.; Lin, Z. H. Electrochim. Acta, 2010, 55: 4889
24. Das, K.; De, S. K. J. Phys. Chem. C, 2009, 113: 3494
25. Bing, J. H.; Kamat, P. V. ACS Nano, 2009, 3: 1467

[1] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2072-2081.
[2] SUN Bao, HAO Yan-Zhong, GUO Fen, LI Ying-Pin, LUO Chong, PEI Juan, SHEN Shi-Gang. Photoelectrochemical Properties of CdS/ZnO Shell-Core Nanorod Arrays Modified with P3HT[J]. Acta Physico-Chimica Sinica, 2012, 28(12): 2861-2866.
[3] PENG Tian-You, KE Ding-Ning, ZENG Peng, ZHANG Xiao-Hu, FAN Ke. Preparation and Photoelectrochemical Performance of BiVO4 Film Electrode[J]. Acta Physico-Chimica Sinica, 2011, 27(09): 2160-2166.