Please wait a minute...
Acta Phys. -Chim. Sin.  2010, Vol. 26 Issue (11): 2967-2974    DOI: 10.3866/PKU.WHXB20101124
ELECTROCHEMISTRY     
Properties of SPES/PWA/SiO2 Composite Proton Exchange Membranes
GONG Chun-Li1, ZHOU Yi1, YAN Li-Cheng2, WEN Sheng1,2, ZHENG Gen-Wen1
1. Faculty of Chemistry and Materials Science, Xiaogan University, Xiaogan 432000, Hubei Province, P. R. China;
2. Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
Download:   PDF(1169KB) Export: BibTeX | EndNote (RIS)      

Abstract  
Novel sulfonated poly(ether sulfone) (SPES)/phosphotungstic acid (PWA)/silica organic-inorganic composite membranes for application in direct methanol fuel cells (DMFCs) were prepared by doping SiO2 sol and PWA into SPES matrix. The structure and performance of the obtained membranes were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), etc. Compared with the pure SPES membrane, SiO2 and PWA doping led to higher thermal stabilities, a higher glass transition temperature (Tg), and higher water uptake. At 20℃ and a fuel cell operating temperature of 80℃, the tensile strength of all the composite membranes was lower than that of the SPES membrane. However, even when the content of SiO2 was as high as 20% (w), the composite membrane still possessed a higher strength than a Nafion 112 membrane. The morphology of the composite membranes indicated that SiO2 and PWA were uniformly distributed throughout the SPES matrix, which may facilitate proton transport. The proton conductivity of the composite membrane (SPES-P-S 15%: 15% (w) SiO2 and 6% (w) PWA) reached 0.034 S·cm-1, which was similar to that of the Nafion 112 membrane at room temperature. However, methanol permeation through the SPES-P-S 15% composite membrane decreased dramatically and was only one-seventh that of the Nafion 112 membrane. This excellent selectivity of the SPES/PWA/SiO2 composite membrane points to its potential use as a promising electrolyte for DMFCs.

 



Key wordsDirect methanol fuel cell      Sulfonated poly(ether sulfone)      SiO2      Phosphotungstic acid      Composite membrane     
Received: 02 June 2010      Published: 08 October 2010
MSC2000:  O646  
Fund:  

The project was supported by the Natural Science Foundation of Hubei Province, China (2009CDZ016).

Corresponding Authors: WEN Sheng     E-mail: shengwen@xgu.cn
Cite this article:

GONG Chun-Li, ZHOU Yi, YAN Li-Cheng, WEN Sheng, ZHENG Gen-Wen. Properties of SPES/PWA/SiO2 Composite Proton Exchange Membranes. Acta Phys. -Chim. Sin., 2010, 26(11): 2967-2974.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB20101124     OR     http://www.whxb.pku.edu.cn/Y2010/V26/I11/2967

1. Rhee, C. H.; Kim, H. K.; Chang, H.; Lee, J. S. Chem. Mater., 2005, 17: 1691
2. Zhang, G. W.; Zhou, Z. T. Membr. Sci. Technol., 2006, 26: 6 [张高文,周震涛. 膜科学与技术, 2006, 26: 6]
3. Fu, X. Z.; Li, J.; Lu, C. H.; Liao, D. W. Progress in Chemistry, 2004, 16: 77 [符显珠, 李俊,卢成慧,廖代伟. 化学进展, 2004, 16: 77]
4. Deng, H. L.; Li, L.; Xu, L.; Wang, Y. X. Acta Phys. -Chim. Sin., 2007, 23: 1235 [邓会宁,李磊,许莉, 王宇新.物理化学学报, 2007, 23: 1235]
5. Hampson, N. A.; Wilars, M. J. J. Power Sources, 1979, 4: 191
6. Wasmus, S.; Kuver, A. J. Electroanal. Chem., 1999, 461: 14
7. Dimitrova, P.; Friedrich, K. A.; Vogt, B.; Stimming, U. J. Electroanal. Chem., 2002, 532: 75
8. Cho, K. Y.; Eom, J. Y.; Jung, H. Y.; Choi, N. S.; Lee, Y. M.; Park, J. K.; Choi, J. H.; Park, K.W.; Sung, Y. E. Electrochim. Acta, 2004, 50: 583
9. Silva, V. S.; Mendes, A.; Madeira, L. M.; Nunes, S. P. J. Membr. Sci., 2006, 276: 126
10. Yang, S. F.; Gong, C. L.; Guan, R.; Zou, H.; Dai, H. Polym. Adv. Technol., 2006, 17: 360
11. Yamada, M.; Honma, I. J. Phys. Chem. B, 2004, 108: 5522
12. Li, X.; Chen, D.; Xu, D.; Zhao, C.; Wang, Z.; Lu, H.; Na, H. J. Membr. Sci., 2006, 275: 134
13. Fu, R. Q.; Julius, D.; Hong, L.; Lee, J. Y. J. Membr. Sci., 2008, 322: 331
14. Hasani-Sadrabadi, M. M.; Emami, S. H.; Moaddel, H. J. Power Sources, 2008, 183: 551
15. Miyake, N.; Wainright, J. S.; Savinell, R. F. J. Electrochem. Soc., 2001, 148: 898
16. Tazi, B.; Savadogo, O. Electrochim. Acta, 2000, 45: 4329
17. Tricoli, V.; Nannetti, F. Electrochim. Acta, 2003, 48: 2625
18. Bonnet, B.; Jones, D. J.; Roziere, J.; Tchicaya, L.; Alberti, G.; Casciola, M.; Massinelli, L.; Bauer, B.; Peraio, A.; Ramunni, E. J. New Mater. Electrochem. Syst., 2000, 3: 87
19. Jung, D. H.; Cho, S. Y.; Peck, D. H.; Shin, D. R.; Kim, J. S. J. Power Sources, 2003, 118: 205
20. Tsai, J. C.; Kuo, J. F.; Chen, C. Y. J. Power Sources, 2007, 174: 103
21. Jiang, R.; Kunz, H. R.; Fenton, J. M. J. Membr. Sci., 2006, 272: 116
22. Shen, Y.; Xi, J. Y.; Qiu, X. P.; Zhu, W. T.; Chen, L. Q. Acta Chim. Sin., 2007, 65: 1318 [申益,席靖宇, 邱新平,朱文涛,陈立泉. 化学学报, 2007, 65: 1318]
23. Wen, S.; Gong, C. L.; Tsen, W. C.; Shu, Y. C.; Tsai, F. C. J. Appl. Polym. Sci., 2010, 116: 1491
24. Xu, J.; Guan, R.; Yu, J. J.; Dai, H. New Chemical Materials, 2007, 35: 23 [许晶,管蓉, 余建佳,代化.化工新型材料, 2007, 35: 23]
25. Smitha, B.; Sridhar, S.; Khan, A. A. J. Polym. Sci. B-Polym. Phys., 2005, 43: 1538
26. Dai, H.; Guan, R.; Li, C.; Liu, J. Solid State Ionics, 2007, 178: 339
27. Wang, Z.; Ni, H. Z.; Zhao, C. J.; Li, X. F.; Na, H. J. Polym. Sci. B- Polym. Phys., 2006, 44: 1967
28. Zheng, G. W.; Gong, C. L.;Wen, S.; Zhou, H. B.; Xie, X. L. Acta Phys. -Chim. Sin., 2009, 25: 575 [郑根稳,龚春丽,文胜,周环波,解孝林.物理化学学报, 2009, 25: 575]
29. Zheng, G. W.; Gong, C. L.;Wen, S.; Xie, X. L. Acta Phys. -Chim. Sin., 2008, 24: 855 [郑根稳, 龚春丽, 文胜,解孝林.物理化学学报, 2008, 24: 855]
30. Shu, Y. C.; Chuang, F. S.; Tsen, W. C.; Chow, J. D.; Gong, C. L.; Wen, S. J. Appl. Polym. Sci., 2008, 108: 1783

[1] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[2] Fang-Fang ZHENG,Qian LI,Hong ZHANG,Wei-Zheng WENG,Xiao-Dong YI,Yan-Ping ZHENG,Chuan-Jing HUANG,Hui-Lin WAN. Preparation and Characterization of Sinter-Resistant Rh-Sm2O3/SiO2 Catalyst and Its Performance for Partial Oxidation of Methane to Syngas[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1689-1698.
[3] Xin-Lei WANG,Kui MA,Li-Hong GUO,Tong DING,Qing-Peng CHENG,Ye TIAN,Xin-Gang LI. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1699-1708.
[4] Lin-Jun ZHAN,Xiao-Yan SUN,Ying ZHOU,Qiu-Lian ZHU,Yin-Fei CHEN,Han-Feng Lu. Deactivation Mechanism of CeO2-Based Mixed Oxide Catalysts Supported on SiO2[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1474-1482.
[5] . Preparation of Highly Dispersed Co/SiO2 Catalyst Using Ethylene Glycol and Its Application in Vapor-Phase Hydrogenolysis of Ethyl Lactate to 1,2-Propanediol[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1511-1518.
[6] Yong-Kang LI,Jing-Lin YOU,Jian WANG,Min WANG,Nan MA,Guang-Chao WEI. Molar Gibbs Mixing Free Energy Calculation for a Na2O-Al2O3-SiO2 Ternary Melt Based on the Cluster Model[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 631-637.
[7] Ya-Li WANG,Qi LI,Wei-Zheng WENG,Wen-Sheng XIA,Hui-Lin WAN. Catalytic Behaviors and Stability of Y2O3-Modified Ni/SiO2 for Partial Oxidation of Methane into Synthesis Gas[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2776-2784.
[8] Xiao-Kun. LI,Dong-Dong. MA,Yan-Ping. ZHENG,Hong. ZHANG,Ding. DING,Ming-Shu. CHEN,Hui-Lin. WAN. Performance of CO Oxidation over Highly Dispersed Gold Catalyst on TiOx/SiO2 Composite Supports[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1753-1760.
[9] QIU Kun-Zan, GUO Wen-Wen, WANG Hai-Xia, ZHU Ling-Jun, WANG Shu-Rong. Influence of Catalyst Structure on Performance of Cu/SiO2 in Hydrogenation of Methyl Acetate[J]. Acta Phys. -Chim. Sin., 2015, 31(6): 1129-1136.
[10] ZU Guo-Qing, SHEN Jun, WANG Wen-Qin, ZOU Li-Ping, XU Wei-Wei, ZHANG Zhi-Hua. Preparation of Heat-Resistant, Core/Shell Nanostructured TiO2/SiO2 Composite Aerogels and Their Photocatalytic Properties[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 360-368.
[11] HOU Hong-Ying. Recent Research Progress in Alkaline Polymer Electrolyte Membranes for Alkaline Solid Fuel Cells[J]. Acta Phys. -Chim. Sin., 2014, 30(8): 1393-1407.
[12] GAO Lin-Xin, JIANG Xin, GUO Sen. MnOx/CeO2/SiO2 Catalysts Prepared by Adsorption Phase Reaction Technique for Selective Catalytic Reduction of NOx at Low-Temperature[J]. Acta Phys. -Chim. Sin., 2014, 30(7): 1303-1308.
[13] LI Jing-Jing, LI Yuan, WANG Ai-Ling, QU Yan-Rong, YUE Bin, ZHOU Dan, CHU Hai-Bin, ZHAO Yong-Liang. Surface Plasmon Resonance Enhanced Luminescence of Europium Complexes with Ag@SiO2 Core-Shell Structure[J]. Acta Phys. -Chim. Sin., 2014, 30(12): 2328-2334.
[14] HAN Shuai-Yuan, YUE Bao-Hua, YAN Liu-Ming. Research Progress in the Development of High-Temperature Proton Exchange Membranes Based on Phosphonic Acid Group[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 8-21.
[15] BAO Zhuo-Ran, CUI Yan-Xi, SUN Peng, SUN Qi, SHI Lei. Vapor-Phase Synthesis of 3-Methylindole from Glycerol and Aniline over Cu/SiO2-Al2O3 Catalyst Modified by Co or Ni[J]. Acta Phys. -Chim. Sin., 2013, 29(11): 2444-2450.