Please wait a minute...
Acta Phys. -Chim. Sin.  2010, Vol. 26 Issue (12): 3187-3192    DOI: 10.3866/PKU.WHXB20101212
Synthesis and Electrochemical Properties of High-Rate Spinel Li4Ti5Ol2/TiN Anode Material for Lithium-Ion Batteries
ZHOU Xiao-Ling, HUANG Rui-An, WU Zhao-Cong, YANG Bin, DAI Yong-Nian
National Engineering Laboratory for Vacuum Metallurgy, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, P. R. China
Download:   PDF(1798KB) Export: BibTeX | EndNote (RIS)      


Spinel Li4Ti5Ol2/TiN was successfully prepared by sol-gel processing using acetylacetone (ACAC) as a chelating ligand and polyethylene glycol (PEG) as a dispersant. The effect of the TiN film on the electrochemical properties of spinel Li4Ti5Ol2 for lithium-ion batteries was studied. The Li4Ti5Ol2/TiN was analyzed by X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images showed that this anode material with the TiN film was pure spinel Li4Ti5Ol2 and was of sub-micron size. The initial specific discharge capacity of the Li4Ti5Ol2/TiN is 173.0 mAh·g-1. When tested at a rate of 0.2C, 1C, 2C, and 5C, it still retained a discharge capacity of 170.6, 147.6, 135.6, and 111.0 mAh·g-1, respectively, after 10 cycles, indicating that Li4Ti5Ol2/TiN had better high-rate performance than that without the TiN film. The positive effect of the TiN film on lithium-ion batteries was also demonstrated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).

Key wordsLithium-ion battery      Spinel Li4Ti5Ol2      TiN film      Anode material      Sol-gel processing      Polyethylene glycol     
Received: 25 June 2010      Published: 02 November 2010
MSC2000:  O646  

The project was supported by the Natural Science Foundation of Yunnan Province, China (2009CD024).

Corresponding Authors: HUANG Rui-An     E-mail:
Cite this article:

ZHOU Xiao-Ling, HUANG Rui-An, WU Zhao-Cong, YANG Bin, DAI Yong-Nian. Synthesis and Electrochemical Properties of High-Rate Spinel Li4Ti5Ol2/TiN Anode Material for Lithium-Ion Batteries. Acta Phys. -Chim. Sin., 2010, 26(12): 3187-3192.

URL:     OR

1. Zaghib, K.; Simoneau, M.; Armand, M.; Gauthier, M. J. Power Sources, 1999, 81-82: 300
2. Yu, Y.; Shui, J. L.; Chen, C. H. Solid State Commun., 2005, 135: 485
3. Nikonov, A. V.; Kelder, E. M.; Schoonman, J.; Ivanov, V. V.; Pivkin, N.M. Solid State Ionics, 2006, 177: 2779
4. Kitaura, H.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. J. Power Sources, 2009, 189:145
5. Colobow, K. M.; Dahn, J. R.; Haering, R. R. J. Power Sources, 1989, 26: 397.
6. Wu, Y. P.;Wan, C. R.; Jiang, C. Y. Rechargeable lithium-ion battery. Beijing: Chemical Industry Press, 2002:126
[吴宇平, 万春荣, 姜长印. 锂离子二次电池. 北京: 化学工业出版社, 2002: 126]
7. Jansen, A. N.; Kahaian, A. J.; Kepler, K. D.; Nelson, P. A.; Amine, K.; Dees, D.W.; Vissers, D. R.; Thackeray, M. M. J. Power Sources, 1999, 81-82: 902
8. Dominko, R.; Gaberscek, M.; Bele, M.; Mihailovic, D.; Jamnik, J. J. Eur. Ceram. Soc., 2007, 27: 909
9. Gao, J.; Ying, J. R.; Jiang, C. Y.;Wan, C. R. J. Power Sources, 2007, 166: 255
10. Yang, L.X.; Gao, L. J. J. Alloy. Compd., 2009, doi:10.1016/j.jallcom.2009.05.151
11. Ye,J.Y.; Zhao, X. B.; Yu; H. M.; Zhu; T. J. Function Materials, 2007, 38: 1423
[叶静雅, 赵新兵, 余鸿明, 朱铁军. 功能材料, 2007, 38 : 1423]
12. Huang, S. H.;Wen, Z. Y.; Zhang, J. C.; Gu, Z. H.; Xu, X. H. Solid State Ionics, 2006, 177: 851
13. Hao,Y. J.; Lai, Q. Y.; Chen, Y. D.; Lu, J.Z.; Ji, X. Y. J. Alloy. Compd., 2008, 462: 404
14. Xiong, L. Z.; He, Z. Q.;Yin, Z. L.; Chen, Q.Y.The Chinese Journal of Nonferrous Metals, 2008, 18: 310
[熊利芝, 何则强, 尹周澜, 陈启元. 中国有色金属学报, 2008, 18 : 310]
15. Huang, S. H.;Wen, Z. Y.; Lin, B.; Han, J. D.; Xu, X. G. J. Alloy. Compd., 2008, 457: 400
16. Yu, H. Y.; Zhang, X. F.; Jalbout, A. F.; Yan, X. D.; Pan, X. M.; Xie, H. M.;Wang, R. S. Electrochimica Acta, 2008, 53: 4200
17. Zhao, H. L.; Yue, L.; Zhu, Z. M.; Jiu, L.; Tian, Z. H.;Wang, R. L. Electrochimica Acta, 2008, 53: 7079
18. Li, X.; Qu, M. Z.; Yu, Z. L. J. Alloy. Compd., 2008, doi:10.1016/ j.jallcom.2009.07.176
19. Huang, S. H.;Wen, Z. Y.; Gu, Z. H.; Zhu, X. J. J. Electrochimica Acta, 2005, 50: 4057
20. Huang, S. H.;Wen, Z. Y.; Zhu, X. J.; Lin, Z. X. J. Power Sources, 2007, 165: 408
21. Mo,W.; Deng, G. Z.; Luo, F. C. Titanium metallurgy. Beijing: Metallurgical Industry Press.1998: 97-99
[莫畏, 邓国珠, 罗方承. 钛冶金. 北京: 冶金工业出版社, 1998: 97-99]
22. Jiang, C. H.; Ichihara, M.; Honma, I.; Zhou, H. S. Electrochimica Acta, 2007, 52: 6470

[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[3] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[4] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1533-1547.
[5] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1421-1428.
[6] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[7] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[8] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[9] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 377-385.
[10] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2517-2522.
[11] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2127-2132.
[12] Sheng-Yi MIAO,Xian-Fu WANG,Cheng-Lin YAN. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 18-27.
[13] Yan-Ping TANG,Sha YUAN,Yu-Zhong GUO,Rui-An HUANG,Jian-Hua WANG,Bin YANG,Yong-Nian DAI. Magnesiothermic Reduction Preparation and Electrochemical Properties of a Highly Ordered Mesoporous Si/C Anode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2280-2286.
[14] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300.
[15] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1999-2006.