Please wait a minute...
Acta Physico-Chimica Sinica
THEORETICAL AND COMPUTATIONAL CHEMISTRY     
Molecular Dynamics Modeling of Uranyl Ion Adsorption onto the Basal Surfaces of Kaolinite
LIU Xiao-Yu, LI Chun, TIAN Wen-Yu, CHEN Tao, WANG Lu-Hua, ZHENG Zhong, ZHU Jian-Bo, SUN Mao, LIU Chun-Li
Beijing National Laboratory for Molecular Sciences, Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download:   PDF(688KB) Export: BibTeX | EndNote (RIS)      

Abstract  

We performed a molecular dynamics simulation to investigate the adsorption of uranyl ions onto the basal surfaces of kaolinite using a simulation cell containing 0.01 mol?L-1 uranyl carbonate and 9× 9×3 kaolinite unit cells. The adsorption sites of the uranyl ions on kaolinite were clearly shown by serial snapshots and the coordination of uranyl ions to oxygen were determined using a radial distribution function. The adsorption trends of uranyl ions on two distinct basal surfaces were discussed using an atomic density profile. Outer-sphere complexation of uranyl on kaolinite was confirmed using the atomic density profile and the mean squared displacement. Confirmation of the outer-sphere complexation supports the theoretical simplification of the adsoption sites in the surface complexation model.



Key wordsMolecular dynamics simulation      Kaolinite      Uranyl ion      Adsorption     
Received: 06 July 2010      Published: 23 November 2010
MSC2000:  O641  
Fund:  

The project was supported by the National Natural Science Foundation of China (10775008), Research Fund for Ph.D Program of the Ministry of Education, China (20060001032), Special Foundation for High LevelWaste Disposal, China (2007-840), Fundamental Research Funds for the Central Universities, China, and Analysis Foundation (13-18) of Peking University, China.

Corresponding Authors: LIU Chun-Li     E-mail: liucl@pku.edu.cn
Cite this article:

LIU Xiao-Yu, LI Chun, TIAN Wen-Yu, CHEN Tao, WANG Lu-Hua, ZHENG Zhong, ZHU Jian-Bo, SUN Mao, LIU Chun-Li. Molecular Dynamics Modeling of Uranyl Ion Adsorption onto the Basal Surfaces of Kaolinite. Acta Physico-Chimica Sinica, 2011, 27(01): 59-64.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB20110107     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2011/V27/I01/59

1. Jenne, E. A. Adsorption of metals by geomedia. San Diego: Academic Press, 1998: 1-73
2. Cygan, R. T.; Brady, V. Adsorption of metals by geomedia. San Diego: Academic Press, 1998: 371-382
3. Arda, D.; Hizal, J.; Apak, R. Radiochim. Acta, 2006, 94: 835
4. Jung, J.; Hyun, S. P.; Lee, J. K.; Cho, Y. H.; Hahn, P. S. J. Radioanal. Nucl. Chem., 1999, 242: 405
5. Krepelova, A.; Sachs, S.; Bernhard, G. Radiochim. Acta, 2006, 94: 825
6. Payne, T. E.; Davis, J. A.; Lumpkin, G. R.; Chisari, R.;Waite, T. D. Appl. Clay Sci., 2004, 26: 151
7. Payne, T. E. Adsorption of metals by geomedia. San Diego: Academic Press, 1998: 75-98
8. Kremleva, A.; Kruger, S.; Rosch, N. Langmuir, 2008, 24: 9515
9. Krepelova, A.; Brendler, V.; Sachs, S.; Baumann, N.; Bernhard, G. Environ. Sci. Technol., 2007, 41: 6142
10. Krepelova, A.; Reich, T.; Sachs, S.; Drebert, J.; Bernhard, G. J. Colloid Interface Sci., 2008, 319: 40
11. Decker, D.; Papelis, C. DOE/NV/13609-14, 2003
12. Greathouse, J. A.; Cygan, R. T. Phys. Chem. Chem. Phys., 2005, 7: 3580
13. Greathouse, J. A.; Cygan, R. T. Environ. Sci. Technol., 2006, 40: 3865
14. Greathouse, J. A.; O'Brien, R. J.; Bemis, G.; Pabalan, R. T. J. Phys. Chem. B, 2002, 106: 1646
15. Vasconcelos, I. F.; Bunker, B. A.; Cygan, R. T. J. Phys. Chem. C, 2007, 111: 6753
16. Cygan, R. T.; Liang, J. J.; Kalinichev, A. G. J. Phys. Chem. B, 2004, 108: 1255
17. Guilbaud, P.;Wipff, G. J. Mol. Struct. -Theochem, 1996, 366: 55
18. Guilbaud, P.;Wipff, G. J. Phys. Chem., 1993, 97: 5685
19. Guilbaud, P.;Wipff, G. New J. Chem., 1996, 20: 631
20. Croteau, T.; Bertram, A. K.; Patey, G. N. J. Phys. Chem. A, 2009, 113: 7826
21. Greathouse, J. A.; Cygan, R. T.; Simmons, B. A. J. Phys. Chem. B, 2006, 110: 6428
22. Liu, X. D.; Lu, X. C. Angew. Chem. Int. Edit., 2006, 45: 6300
23. Niu, J. N.; Qiang, Y. H. Acta Phys. -Chim. Sin., 2009, 25: 1167
[牛继南, 强颖怀. 物理化学学报. 2009, 25: 1167]
24. Kerisit, S.; Liu, C. X. Environ. Sci. Technol., 2009, 43: 777
25. Berendsen, J. M.; van Gunsteren,W. F.; Hermans, J. Intermolecular forces. Dordrecht: D. Reidel Publishing Company, 1981: 331-342
26. Baaden, M.; Schurhammer, R.;Wipff, G. J. Phys. Chem. B, 2002, 106: 434
27. Hutschka, F.; Dedieu, A.; Troxler, L.;Wipff, G. J. Phys. Chem. A, 1998, 102: 3773
28. Bish, D. L. Clay Clay Min., 1993, 41: 738
29. Plimpton, S. J. Comput. Phys., 1995, 117: 1
30. Verlet, L. Physical Review, 1968, 165: 201
31. Verlet, L. Physical Review, 1967, 159: 98
32. Ewald, P. P. Ann. Phys.-Berlin, 1921, 64: 253
33. Thompson, H. P.; Brown, J. Adsorption of metals by geomedia. San Diego: Academic Press, 1998: 350-371
34. Awakura, Y.; Sato, K.; Majima, H.; Hirono, S. Metallurgical Transactions B-Process Metallurgy, 1987, 18:19

[1] WU Xuanjun, LI Lei, PENG Liang, WANG Yetong, CAI Weiquan. Effect of Coordinatively Unsaturated Metal Sites in Porous Aromatic Frameworks on Hydrogen Storage Capacity[J]. Acta Physico-Chimica Sinica, 2018, 34(3): 286-295.
[2] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1905-1914.
[3] ZHANG Chen-Hui, ZHAO Xin, LEI Jin-Mei, MA Yue, DU Feng-Pei. Wettability of Triton X-100 on Wheat (Triticum aestivum) Leaf Surfaces with Respect to Developmental Changes[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1846-1854.
[4] YAO Chan, LI Guo-Yan, XU Yan-Hong. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinica, 2017, 33(9): 1898-1904.
[5] CAO Liao-Ran, ZHANG Chun-Yu, ZHANG Ding-Lin, CHU Hui-Ying, ZHANG Yue-Bin, LI Guo-Hui. Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Physico-Chimica Sinica, 2017, 33(7): 1354-1365.
[6] CHEN Fang, LIU Yuan-Yuan, WANG Jian-Long, Su Ning-Ning, LI Li-Jie, CHEN Hong-Chun. nvestigation of the Co-Solvent Effect on the Crystal Morphology of β-HMX using Molecular Dynamics Simulations[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1140-1148.
[7] MO Zhou-Sheng, QIN Yu-Cai, ZHANG Xiao-Tong, DUAN Lin-Hai, SONG Li-Juan. Influencing Mechanism of Cyclohexene on Thiophene Adsorption over CuY Zeolites[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1236-1241.
[8] CHEN Yi-Jian, ZHOU Hong-Tao, GE Ji-Jiang, XU Gui-Ying. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinica, 2017, 33(6): 1214-1222.
[9] DAI Wei-Guo, HE Dan-Nong. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinica, 2017, 33(5): 960-967.
[10] HE Lei, ZHANG Xiang-Qian, LU An-Hui. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinica, 2017, 33(4): 709-728.
[11] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Physico-Chimica Sinica, 2017, 33(2): 426-434.
[12] LIU Qing-Kang, SONG Wen-Ping, HUANG Qi-Tao, ZHANG Guang-Yu, HOU Zhen-Xiu. ReaxFF Reactive Molecular Dynamics Simulation of the Oxidation of Silicon-doped Amorphous Carbon Film in Heat-assisted Magnetic Recording[J]. Acta Physico-Chimica Sinica, 2017, 33(12): 2472-2479.
[13] SUN Yi-Ran, YU Fei, MA Jie. Research Progress of Nanoconfined Water[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2173-2183.
[14] ZHANG Tao-Na, XU Xue-Wen, DONG Liang, TAN Zhao-Yi, LIU Chun-Li. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2013-2021.
[15] CHEN Jun-Jun, SHI Cheng-Wu, ZHANG Zheng-Guo, XIAO Guan-Nan, SHAO Zhang-Peng, LI Nan-Nan. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinica, 2017, 33(10): 2029-2034.